Skip to content

Creation

Creation (basic)¤

empty staticmethod ¤

empty(
    *shape,
    device: str | tuple[str, ...] | None = None,
    dtype: DTypeLike | None = None,
    **kwargs
) -> Tensor

Creates an empty tensor with the given shape.

You can pass in dtype and device keyword arguments to control the data type and device of the tensor. Additionally, all other keyword arguments are passed to the constructor of the tensor.

t = Tensor.empty(2, 3)
print(t.shape)
(2, 3)
Source code in tinygrad/tensor.py
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
@staticmethod
def empty(*shape, device:str|tuple[str, ...]|None=None, dtype:DTypeLike|None=None, **kwargs) -> Tensor:
  """
  Creates an empty tensor with the given shape.

  You can pass in `dtype` and `device` keyword arguments to control the data type and device of the tensor.
  Additionally, all other keyword arguments are passed to the constructor of the tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor.empty(2, 3)
  print(t.shape)
  ```
  """
  dtype, shape = to_dtype(dtype) if dtype is not None else dtypes.default_float, argfix(*shape)
  if not isinstance(size:=prod([x.vmax if isinstance(x, UOp) else x for x in shape]), int): raise ValueError(f"size must be int {size}")
  # TODO: add test for multidevice tensor
  device = tuple(canonicalize_device(d) for d in device) if isinstance(device, tuple) else canonicalize_device(device)
  return Tensor(UOp.new_buffer(device, size, dtype), device, dtype, **kwargs).shrink(((0,prod(shape)),)).reshape(shape)

zeros staticmethod ¤

zeros(*shape, **kwargs) -> Tensor

Creates a tensor with the given shape, filled with zeros.

You can pass in dtype and device keyword arguments to control the data type and device of the tensor. Additionally, all other keyword arguments are passed to the constructor of the tensor.

print(Tensor.zeros(2, 3).numpy())
[[0. 0. 0.]
 [0. 0. 0.]]
print(Tensor.zeros(2, 3, dtype=dtypes.int32).numpy())
[[0 0 0]
 [0 0 0]]

Source code in tinygrad/tensor.py
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
@staticmethod
def zeros(*shape, **kwargs) -> Tensor:
  """
  Creates a tensor with the given shape, filled with zeros.

  You can pass in `dtype` and `device` keyword arguments to control the data type and device of the tensor.
  Additionally, all other keyword arguments are passed to the constructor of the tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor.zeros(2, 3).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor.zeros(2, 3, dtype=dtypes.int32).numpy())
  ```
  """
  return Tensor.full(argfix(*shape), 0.0, **kwargs)

ones staticmethod ¤

ones(*shape, **kwargs) -> Tensor

Creates a tensor with the given shape, filled with ones.

You can pass in dtype and device keyword arguments to control the data type and device of the tensor. Additionally, all other keyword arguments are passed to the constructor of the tensor.

print(Tensor.ones(2, 3).numpy())
[[1. 1. 1.]
 [1. 1. 1.]]
print(Tensor.ones(2, 3, dtype=dtypes.int32).numpy())
[[1 1 1]
 [1 1 1]]

Source code in tinygrad/tensor.py
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
@staticmethod
def ones(*shape, **kwargs) -> Tensor:
  """
  Creates a tensor with the given shape, filled with ones.

  You can pass in `dtype` and `device` keyword arguments to control the data type and device of the tensor.
  Additionally, all other keyword arguments are passed to the constructor of the tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor.ones(2, 3).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor.ones(2, 3, dtype=dtypes.int32).numpy())
  ```
  """
  return Tensor.full(argfix(*shape), 1.0, **kwargs)

full staticmethod ¤

full(
    shape: tuple[sint, ...], fill_value: ConstType, **kwargs
) -> Tensor

Creates a tensor with the given shape, filled with the given value.

You can pass in dtype and device keyword arguments to control the data type and device of the tensor. Additionally, all other keyword arguments are passed to the constructor of the tensor.

print(Tensor.full((2, 3), 42).numpy())
[[42 42 42]
 [42 42 42]]
print(Tensor.full((2, 3), False).numpy())
[[False False False]
 [False False False]]

Source code in tinygrad/tensor.py
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
@staticmethod
def full(shape:tuple[sint, ...], fill_value:ConstType, **kwargs) -> Tensor:
  """
  Creates a tensor with the given shape, filled with the given value.

  You can pass in `dtype` and `device` keyword arguments to control the data type and device of the tensor.
  Additionally, all other keyword arguments are passed to the constructor of the tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor.full((2, 3), 42).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor.full((2, 3), False).numpy())
  ```
  """
  return Tensor(fill_value, _force_unique=True, **kwargs).reshape((1, )*len(new_shape := argfix(shape))).expand(new_shape)

arange staticmethod ¤

arange(start, stop=None, step=1, **kwargs) -> Tensor

Returns a 1-D tensor of size ceil((stop - start) / step) with values from [start, stop), with spacing between values given by step.

If stop is not specified, values are generated from [0, start) with the given step.

If stop is specified, values are generated from [start, stop) with the given step.

You can pass in dtype and device keyword arguments to control the data type and device of the tensor. Additionally, all other keyword arguments are passed to the constructor of the tensor.

print(Tensor.arange(5).numpy())
[0 1 2 3 4]
print(Tensor.arange(5, 10).numpy())
[5 6 7 8 9]
print(Tensor.arange(5, 10, 2).numpy())
[5 7 9]
print(Tensor.arange(5.5, 10, 2).numpy())
[5.5 7.5 9.5]

Source code in tinygrad/tensor.py
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
@staticmethod
def arange(start, stop=None, step=1, **kwargs) -> Tensor:
  """
  Returns a 1-D tensor of size `ceil((stop - start) / step)` with values from `[start, stop)`, with spacing between values given by `step`.

  If `stop` is not specified, values are generated from `[0, start)` with the given `step`.

  If `stop` is specified, values are generated from `[start, stop)` with the given `step`.

  You can pass in `dtype` and `device` keyword arguments to control the data type and device of the tensor.
  Additionally, all other keyword arguments are passed to the constructor of the tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor.arange(5).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor.arange(5, 10).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor.arange(5, 10, 2).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor.arange(5.5, 10, 2).numpy())
  ```
  """
  if stop is None: stop, start = start, 0
  dtype = kwargs.pop("dtype", dtypes.default_float if any(isinstance(x, float) for x in (start, stop, step)) else dtypes.default_int)
  if start < (dt:=to_dtype(dtype)).min or dt.max < (stop-step): raise ValueError(f"arange [{start}, {stop}) is not representable in dtype {dtype}")
  # NOTE: this matches numpy, torch raises RuntimeError if stop-start and step have different signs
  if (output_len:=ceildiv(stop-start, step)) <= 0: return Tensor([], dtype=dtype, **kwargs)
  return (Tensor.full((output_len,), step, dtype=dtype, **kwargs)._cumalu(0, Ops.ADD) + (start - step)).cast(dtype)

linspace staticmethod ¤

linspace(
    start: int | float,
    stop: int | float,
    steps: int,
    **kwargs
) -> Tensor

Returns a 1-D tensor of steps evenly spaced values from start to stop, inclusive.

You can pass in dtype and device keyword arguments to control the data type and device of the tensor. Additionally, all other keyword arguments are passed to the constructor of the tensor.

print(Tensor.linspace(0, 10, 5).numpy())
[ 0.   2.5  5.   7.5 10. ]
print(Tensor.linspace(-1, 1, 5).numpy())
[-1.  -0.5  0.   0.5  1. ]

Source code in tinygrad/tensor.py
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
@staticmethod
def linspace(start:int|float, stop:int|float, steps:int, **kwargs) -> Tensor:
  """
  Returns a 1-D tensor of `steps` evenly spaced values from `start` to `stop`, inclusive.

  You can pass in `dtype` and `device` keyword arguments to control the data type and device of the tensor.
  Additionally, all other keyword arguments are passed to the constructor of the tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor.linspace(0, 10, 5).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor.linspace(-1, 1, 5).numpy())
  ```
  """
  if steps < 0: raise ValueError("number of steps must be non-negative")
  if (dtype := to_dtype(kwargs.pop("dtype", dtypes.default_float))) == dtypes.bool: raise ValueError("linspace with bool dtype is not supported")
  if steps == 1: return Tensor([start], dtype=dtype, **kwargs)
  return (start + Tensor.arange(steps, **kwargs) * ((stop - start) / (steps - 1))).cast(dtype)

eye staticmethod ¤

eye(
    n: int,
    m: int | None = None,
    dtype=None,
    device=None,
    requires_grad: bool | None = None,
) -> Tensor

Returns a 2-D tensor with n rows and m columns, with ones on the diagonal and zeros elsewhere.

You can pass in dtype and device keyword arguments to control the data type and device of the tensor. Additionally, all other keyword arguments are passed to the constructor of the tensor.

print(Tensor.eye(3).numpy())
[[1. 0. 0.]
 [0. 1. 0.]
 [0. 0. 1.]]
print(Tensor.eye(2, 4).numpy())
[[1. 0. 0. 0.]
 [0. 1. 0. 0.]]
Source code in tinygrad/tensor.py
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
@staticmethod
def eye(n:int, m:int|None=None, dtype=None, device=None, requires_grad:bool|None=None) -> Tensor:
  """
  Returns a 2-D tensor with `n` rows and `m` columns, with ones on the diagonal and zeros elsewhere.

  You can pass in `dtype` and `device` keyword arguments to control the data type and device of the tensor.
  Additionally, all other keyword arguments are passed to the constructor of the tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor.eye(3).numpy())
  ```

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor.eye(2, 4).numpy())
  ```
  """
  if n < 0 or ((m := n if m is None else m) < 0): raise ValueError(f"cannot have negative {n=}, {m=}")
  t = (Tensor.arange(n, device=device).unsqueeze(-1) == Tensor.arange(m, device=device))
  return t.cast(dtype or dtypes.default_float).requires_grad_(requires_grad)

full_like ¤

full_like(fill_value: ConstType, **kwargs) -> Tensor

Creates a tensor with the same shape as self, filled with the given value. If dtype is not specified, the dtype of self is used.

You can pass in the device keyword argument to control device of the tensor. Additionally, all other keyword arguments are passed to the constructor of the tensor.

t = Tensor.ones(2, 3)
print(Tensor.full_like(t, 42).numpy())
[[42. 42. 42.]
 [42. 42. 42.]]
Source code in tinygrad/tensor.py
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
def full_like(self, fill_value:ConstType, **kwargs) -> Tensor:
  """
  Creates a tensor with the same shape as `self`, filled with the given value.
  If `dtype` is not specified, the dtype of `self` is used.

  You can pass in the `device` keyword argument to control device of the tensor.
  Additionally, all other keyword arguments are passed to the constructor of the tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor.ones(2, 3)
  print(Tensor.full_like(t, 42).numpy())
  ```
  """
  if isinstance(self.device, tuple): return self._multi_like(Tensor.full, fill_value, **kwargs)
  return Tensor.full(self.shape, fill_value, dtype=kwargs.pop("dtype", self.dtype), device=kwargs.pop("device", self.device), **kwargs)

zeros_like ¤

zeros_like(**kwargs) -> Tensor

Creates a tensor with the same shape as self, filled with zeros.

You can pass in dtype and device keyword arguments to control the data type and device of the tensor. Additionally, all other keyword arguments are passed to the constructor of the tensor.

t = Tensor.ones(2, 3)
print(Tensor.zeros_like(t).numpy())
[[0. 0. 0.]
 [0. 0. 0.]]
Source code in tinygrad/tensor.py
769
770
771
772
773
774
775
776
777
778
779
780
781
def zeros_like(self, **kwargs) -> Tensor:
  """
  Creates a tensor with the same shape as `self`, filled with zeros.

  You can pass in `dtype` and `device` keyword arguments to control the data type and device of the tensor.
  Additionally, all other keyword arguments are passed to the constructor of the tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor.ones(2, 3)
  print(Tensor.zeros_like(t).numpy())
  ```
  """
  return self.full_like(0, **kwargs)

ones_like ¤

ones_like(**kwargs) -> Tensor

Creates a tensor with the same shape as self, filled with ones.

You can pass in dtype and device keyword arguments to control the data type and device of the tensor. Additionally, all other keyword arguments are passed to the constructor of the tensor.

t = Tensor.zeros(2, 3)
print(Tensor.ones_like(t).numpy())
[[1. 1. 1.]
 [1. 1. 1.]]
Source code in tinygrad/tensor.py
783
784
785
786
787
788
789
790
791
792
793
794
795
def ones_like(self, **kwargs) -> Tensor:
  """
  Creates a tensor with the same shape as `self`, filled with ones.

  You can pass in `dtype` and `device` keyword arguments to control the data type and device of the tensor.
  Additionally, all other keyword arguments are passed to the constructor of the tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor.zeros(2, 3)
  print(Tensor.ones_like(t).numpy())
  ```
  """
  return self.full_like(1, **kwargs)

Creation (external)¤

from_blob staticmethod ¤

from_blob(
    ptr: int, shape: tuple[int, ...], **kwargs
) -> Tensor

Exposes the pointer as a Tensor without taking ownership of the original data. The pointer must remain valid for the entire lifetime of the created Tensor.

You can pass in dtype and device keyword arguments to control the data type and device of the tensor. Additionally, all other keyword arguments are passed to the constructor of the tensor.

Source code in tinygrad/tensor.py
516
517
518
519
520
521
522
523
524
525
526
527
528
@staticmethod
def from_blob(ptr:int, shape:tuple[int, ...], **kwargs) -> Tensor:
  """
  Exposes the pointer as a Tensor without taking ownership of the original data.
  The pointer must remain valid for the entire lifetime of the created Tensor.

  You can pass in `dtype` and `device` keyword arguments to control the data type and device of the tensor.
  Additionally, all other keyword arguments are passed to the constructor of the tensor.
  """
  r = Tensor.empty(*shape, **kwargs)
  assert isinstance(r.device, str)
  cast(Buffer, r.uop.buffer).allocate(external_ptr=ptr)
  return r

from_url staticmethod ¤

from_url(
    url: str, gunzip: bool = False, **kwargs
) -> Tensor

Creates a Tensor from a URL.

This is the preferred way to access Internet resources. It currently returns a DISK Tensor, but in the future it may return an HTTP Tensor. This also will soon become lazy (when possible) and not print progress without DEBUG.

The gunzip flag will gzip extract the resource and return an extracted Tensor.

Source code in tinygrad/tensor.py
530
531
532
533
534
535
536
537
538
539
540
541
@staticmethod
def from_url(url:str, gunzip:bool=False, **kwargs) -> Tensor:
  """
  Creates a Tensor from a URL.

  This is the preferred way to access Internet resources.
  It currently returns a DISK Tensor, but in the future it may return an HTTP Tensor.
  This also will soon become lazy (when possible) and not print progress without DEBUG.

  The `gunzip` flag will gzip extract the resource and return an extracted Tensor.
  """
  return Tensor(fetch(url, gunzip=gunzip), **kwargs)

Creation (random)¤

manual_seed staticmethod ¤

manual_seed(seed=0) -> None

Sets the seed for random operations.

Tensor.manual_seed(42)
print(Tensor.rand(5).numpy())
print(Tensor.rand(5).numpy())
[0.997  0.5899 0.2225 0.7551 0.9057]
[0.6162 0.6213 0.9791 0.7851 0.4178]
Tensor.manual_seed(42)  # reset to the same seed
print(Tensor.rand(5).numpy())
print(Tensor.rand(5).numpy())
[0.997  0.5899 0.2225 0.7551 0.9057]
[0.6162 0.6213 0.9791 0.7851 0.4178]

Source code in tinygrad/tensor.py
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
@staticmethod
def manual_seed(seed=0) -> None:
  """
  Sets the seed for random operations.

  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  print(Tensor.rand(5).numpy())
  print(Tensor.rand(5).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)  # reset to the same seed
  print(Tensor.rand(5).numpy())
  print(Tensor.rand(5).numpy())
  ```
  """
  Tensor._seed, Tensor._device_seeds, Tensor._device_rng_counters = seed, {}, {}

rand staticmethod ¤

rand(
    *shape,
    device: str | None = None,
    dtype: DTypeLike | None = None,
    contiguous: bool = True,
    **kwargs
) -> Tensor

Creates a tensor with the given shape, filled with random values from a uniform distribution over the interval [0, 1).

You can pass in dtype and device keyword arguments to control the data type and device of the tensor. Additionally, all other keyword arguments are passed to the constructor of the tensor.

Tensor.manual_seed(42)
t = Tensor.rand(2, 3)
print(t.numpy())
[[0.997  0.5899 0.2225]
 [0.7551 0.9057 0.8649]]
Source code in tinygrad/tensor.py
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
@staticmethod
def rand(*shape, device:str|None=None, dtype:DTypeLike|None=None, contiguous:bool=True, **kwargs) -> Tensor:
  """
  Creates a tensor with the given shape, filled with random values from a uniform distribution over the interval `[0, 1)`.

  You can pass in `dtype` and `device` keyword arguments to control the data type and device of the tensor.
  Additionally, all other keyword arguments are passed to the constructor of the tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  t = Tensor.rand(2, 3)
  print(t.numpy())
  ```
  """
  if not dtypes.is_float(dtype := to_dtype(dtype or dtypes.default_float)): raise ValueError(f"rand only supports float dtypes, got {dtype}")
  if not all_int(shape:=argfix(*shape)) or not all(s >= 0 for s in shape): raise ValueError(f"invalid input {shape=}")
  if device is not None and not isinstance(device, str): raise ValueError(f"rand only supports single device, got {device=}")
  device = canonicalize_device(device)

  # if shape has 0, return zero tensor
  if (numel := prod(shape)) == 0: return Tensor.zeros(shape, device=device, dtype=dtype, **kwargs)
  num = ceildiv(numel * dtype.itemsize, 4)

  # generate per device seeds and rng counter if we haven't seen this device yet
  if device not in Tensor._device_seeds:
    Tensor._device_seeds[device] = Tensor(
      [int.from_bytes(hashlib.sha256(len(Tensor._device_seeds).to_bytes(4, "big")).digest(), "big"), Tensor._seed],
      device=device, dtype=dtypes.uint32, requires_grad=False)
    Tensor._device_rng_counters[device] = Tensor([num], device=device, dtype=dtypes.uint32, requires_grad=False)
  # increment rng counter for devices
  else: Tensor._device_rng_counters[device].assign(Tensor._device_rng_counters[device] + num)

  # threefry random bits
  bits_count = Tensor._device_rng_counters[device] - num
  counts0 = (Tensor.arange(ceildiv(num, 2), device=device, dtype=dtypes.uint32, requires_grad=False)+bits_count)
  counts1 = counts0 + ceildiv(num, 2)
  bits = Tensor._threefry_random_bits(Tensor._device_seeds[device], counts0, counts1)[:num]

  # bitcast to uint with same number of bits
  _, nmant = dtypes.finfo(dtype)
  uint_dtype = {1: dtypes.uint8, 2: dtypes.uint16, 4: dtypes.uint32, 8: dtypes.uint64}[dtype.itemsize]
  bits = bits.bitcast(uint_dtype)
  # only randomize the mantissa bits and set the exponent to 1
  one = Tensor.ones_like(bits, device=bits.device, dtype=dtype).bitcast(uint_dtype)
  bits = bits.rshift((dtype.itemsize * 8) - nmant).bitwise_or(one)
  # bitcast back to the original dtype and reshape
  out = bits.bitcast(dtype)[:numel].sub(1).reshape(shape).requires_grad_(kwargs.get("requires_grad"))
  return out.contiguous() if contiguous else out

rand_like ¤

rand_like(**kwargs) -> Tensor

Creates a tensor with the same shape and sharding as self, filled with random values from a uniform distribution over the interval [0, 1).

You can pass in dtype and device keyword arguments to control the data type and device of the tensor. Additionally, all other keyword arguments are passed to the constructor of the tensor.

t = Tensor.ones(2, 3)
print(Tensor.rand_like(t).numpy())
[[0.6213 0.9791 0.8408]
 [0.4178 0.6334 0.9325]]
Source code in tinygrad/tensor.py
797
798
799
800
801
802
803
804
805
806
807
808
809
810
def rand_like(self, **kwargs) -> Tensor:
  """
  Creates a tensor with the same shape and sharding as `self`, filled with random values from a uniform distribution over the interval `[0, 1)`.

  You can pass in `dtype` and `device` keyword arguments to control the data type and device of the tensor.
  Additionally, all other keyword arguments are passed to the constructor of the tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor.ones(2, 3)
  print(Tensor.rand_like(t).numpy())
  ```
  """
  if isinstance(self.device, tuple): return self._multi_like(Tensor.rand, **kwargs)
  return Tensor.rand(*self.shape, device=kwargs.pop("device", self.device), dtype=kwargs.pop("dtype", self.dtype), **kwargs)

randn staticmethod ¤

randn(
    *shape,
    dtype: DTypeLike | None = None,
    requires_grad: bool | None = None,
    **kwargs
) -> Tensor

Creates a tensor with the given shape, filled with random values from a normal distribution with mean 0 and standard deviation 1. If dtype is not specified, the default type is used.

You can pass in the device keyword argument to control device of the tensor. Additionally, all other keyword arguments are passed to the constructor of the tensor.

Tensor.manual_seed(42)
print(Tensor.randn(2, 3).numpy())
[[ 0.9779  0.4678  0.5526]
 [-0.3288 -0.8555  0.2753]]
Source code in tinygrad/tensor.py
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
@staticmethod
def randn(*shape, dtype:DTypeLike|None=None, requires_grad:bool|None=None, **kwargs) -> Tensor:
  """
  Creates a tensor with the given shape, filled with random values from a normal distribution with mean `0` and standard deviation `1`.
  If `dtype` is not specified, the default type is used.

  You can pass in the `device` keyword argument to control device of the tensor.
  Additionally, all other keyword arguments are passed to the constructor of the tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  print(Tensor.randn(2, 3).numpy())
  ```
  """
  return Tensor.empty(*shape, **kwargs).randn_like(dtype=dtype, requires_grad=requires_grad)

randn_like ¤

randn_like(
    dtype: DTypeLike | None = None,
    requires_grad: bool | None = None,
    **kwargs
) -> Tensor

Creates a tensor with the same shape and sharding as self, filled with random values from a normal distribution with mean 0 and variance 1.

You can pass in dtype and device keyword arguments to control the data type and device of the tensor. Additionally, all other keyword arguments are passed to the constructor of the tensor.

t = Tensor.ones(2, 3)
print(Tensor.randn_like(t).numpy())
[[ 0.0229 -0.8954  0.415 ]
 [-1.5933  0.96   -1.2354]]
Source code in tinygrad/tensor.py
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
def randn_like(self, dtype:DTypeLike|None=None, requires_grad:bool|None=None, **kwargs) -> Tensor:
  """
  Creates a tensor with the same shape and sharding as `self`, filled with random values from a normal distribution with mean 0 and variance 1.

  You can pass in `dtype` and `device` keyword arguments to control the data type and device of the tensor.
  Additionally, all other keyword arguments are passed to the constructor of the tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor.ones(2, 3)
  print(Tensor.randn_like(t).numpy())
  ```
  """
  src = self.stack(self).rand_like(**{**kwargs, "dtype": dtypes.float32})
  # https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform
  return (src[0].mul(2*math.pi).cos().mul((1 - src[1]).log().mul(-2).sqrt()).cast(dtype or self.dtype)).requires_grad_(requires_grad)

randint staticmethod ¤

randint(
    *shape, low=0, high=10, dtype=int32, **kwargs
) -> Tensor

Creates a tensor with the given shape, filled with random integer values generated uniformly from the interval [low, high). If dtype is not specified, the default type is used.

You can pass in the device keyword argument to control device of the tensor. Additionally, all other keyword arguments are passed to the constructor of the tensor.

Tensor.manual_seed(42)
print(Tensor.randint(2, 3, low=5, high=10).numpy())
[[9 7 6]
 [8 9 9]]
Source code in tinygrad/tensor.py
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
@staticmethod
def randint(*shape, low=0, high=10, dtype=dtypes.int32, **kwargs) -> Tensor:
  """
  Creates a tensor with the given shape, filled with random integer values generated uniformly from the interval `[low, high)`.
  If `dtype` is not specified, the default type is used.

  You can pass in the `device` keyword argument to control device of the tensor.
  Additionally, all other keyword arguments are passed to the constructor of the tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  print(Tensor.randint(2, 3, low=5, high=10).numpy())
  ```
  """
  if not isinstance(low, int) or not isinstance(high, int): raise TypeError(f"{low=} and {high=} must be integers")
  dtype = to_dtype(dtype)
  if not dtypes.is_int(dtype): raise TypeError(f"{dtype=} must be int")
  return Tensor.uniform(*shape, low=low, high=high, dtype=dtype, **kwargs)

randperm staticmethod ¤

randperm(
    n: int, device=None, dtype=int32, **kwargs
) -> Tensor

Returns a tensor with a random permutation of integers from 0 to n-1.

Tensor.manual_seed(42)
print(Tensor.randperm(6).numpy())
[2 1 3 5 4 0]
Source code in tinygrad/tensor.py
961
962
963
964
965
966
967
968
969
970
971
@staticmethod
def randperm(n:int, device=None, dtype=dtypes.int32, **kwargs) -> Tensor:
  """
  Returns a tensor with a random permutation of integers from `0` to `n-1`.

  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  print(Tensor.randperm(6).numpy())
  ```
  """
  return Tensor.rand(n, device=device, **kwargs).argsort().cast(dtype)

normal staticmethod ¤

normal(
    *shape,
    mean=0.0,
    std=1.0,
    requires_grad: bool | None = None,
    **kwargs
) -> Tensor

Creates a tensor with the given shape, filled with random values from a normal distribution with the given mean and standard deviation std.

You can pass in dtype and device keyword arguments to control the data type and device of the tensor. Additionally, all other keyword arguments are passed to the constructor of the tensor.

Tensor.manual_seed(42)
print(Tensor.normal(2, 3, mean=10, std=2).numpy())
[[11.9557 10.9356 11.1053]
 [ 9.3423  8.289  10.5505]]
Source code in tinygrad/tensor.py
865
866
867
868
869
870
871
872
873
874
875
876
877
878
@staticmethod
def normal(*shape, mean=0.0, std=1.0, requires_grad:bool|None=None, **kwargs) -> Tensor:
  """
  Creates a tensor with the given shape, filled with random values from a normal distribution with the given `mean` and standard deviation `std`.

  You can pass in `dtype` and `device` keyword arguments to control the data type and device of the tensor.
  Additionally, all other keyword arguments are passed to the constructor of the tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  print(Tensor.normal(2, 3, mean=10, std=2).numpy())
  ```
  """
  return ((std * Tensor.randn(*shape, **kwargs)) + mean).requires_grad_(requires_grad)

uniform staticmethod ¤

uniform(
    *shape,
    low=0.0,
    high=1.0,
    dtype: DTypeLike | None = None,
    requires_grad: bool | None = None,
    **kwargs
) -> Tensor

Creates a tensor with the given shape, filled with random values from a uniform distribution over the interval [low, high).

You can pass in dtype and device keyword arguments to control the data type and device of the tensor. Additionally, all other keyword arguments are passed to the constructor of the tensor.

Tensor.manual_seed(42)
print(Tensor.uniform(2, 3, low=2, high=10).numpy())
[[9.9763 6.7193 3.7804]
 [8.0404 9.2452 8.9191]]
Source code in tinygrad/tensor.py
880
881
882
883
884
885
886
887
888
889
890
891
892
893
@staticmethod
def uniform(*shape, low=0.0, high=1.0, dtype:DTypeLike|None=None, requires_grad:bool|None=None, **kwargs) -> Tensor:
  """
  Creates a tensor with the given shape, filled with random values from a uniform distribution over the interval `[low, high)`.

  You can pass in `dtype` and `device` keyword arguments to control the data type and device of the tensor.
  Additionally, all other keyword arguments are passed to the constructor of the tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  print(Tensor.uniform(2, 3, low=2, high=10).numpy())
  ```
  """
  return (((high-low) * Tensor.rand(*shape, **kwargs)).cast(dtype or dtypes.default_float) + low).requires_grad_(requires_grad)

scaled_uniform staticmethod ¤

scaled_uniform(*shape, **kwargs) -> Tensor

Creates a tensor with the given shape, filled with random values from a uniform distribution over the interval [-prod(shape)**-0.5, prod(shape)**-0.5).

You can pass in dtype and device keyword arguments to control the data type and device of the tensor. Additionally, all other keyword arguments are passed to the constructor of the tensor.

Tensor.manual_seed(42)
print(Tensor.scaled_uniform(2, 3).numpy())
[[ 0.4058  0.0734 -0.2265]
 [ 0.2082  0.3312  0.2979]]
Source code in tinygrad/tensor.py
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
@staticmethod
def scaled_uniform(*shape, **kwargs) -> Tensor:
  """
  Creates a tensor with the given shape, filled with random values from a uniform distribution
  over the interval `[-prod(shape)**-0.5, prod(shape)**-0.5)`.

  You can pass in `dtype` and `device` keyword arguments to control the data type and device of the tensor.
  Additionally, all other keyword arguments are passed to the constructor of the tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  print(Tensor.scaled_uniform(2, 3).numpy())
  ```
  """
  return Tensor.uniform(*shape, low=-1.0, high=1.0, **kwargs).mul(prod(argfix(*shape))**-0.5)

glorot_uniform staticmethod ¤

glorot_uniform(*shape, **kwargs) -> Tensor

https://www.tensorflow.org/api_docs/python/tf/keras/initializers/GlorotUniform

You can pass in dtype and device keyword arguments to control the data type and device of the tensor. Additionally, all other keyword arguments are passed to the constructor of the tensor.

Tensor.manual_seed(42)
print(Tensor.glorot_uniform(2, 3).numpy())
[[ 1.0889  0.197  -0.6079]
 [ 0.5588  0.8887  0.7994]]
Source code in tinygrad/tensor.py
912
913
914
915
916
917
918
919
920
921
922
923
924
925
@staticmethod
def glorot_uniform(*shape, **kwargs) -> Tensor:
  """
  <https://www.tensorflow.org/api_docs/python/tf/keras/initializers/GlorotUniform>

  You can pass in `dtype` and `device` keyword arguments to control the data type and device of the tensor.
  Additionally, all other keyword arguments are passed to the constructor of the tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  print(Tensor.glorot_uniform(2, 3).numpy())
  ```
  """
  return Tensor.uniform(*shape, low=-1.0, high=1.0, **kwargs).mul((6/(argfix(*shape)[0]+prod(argfix(*shape)[1:])))**0.5)

kaiming_uniform staticmethod ¤

kaiming_uniform(
    *shape, a: float = 0.01, **kwargs
) -> Tensor

https://pytorch.org/docs/stable/_modules/torch/nn/init.html#kaiming_uniform_

You can pass in dtype and device keyword arguments to control the data type and device of the tensor. Additionally, all other keyword arguments are passed to the constructor of the tensor.

Tensor.manual_seed(42)
print(Tensor.kaiming_uniform(2, 3).numpy())
[[ 1.4058  0.2543 -0.7847]
 [ 0.7214  1.1473  1.032 ]]
Source code in tinygrad/tensor.py
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
@staticmethod
def kaiming_uniform(*shape, a:float = 0.01, **kwargs) -> Tensor:
  """
  <https://pytorch.org/docs/stable/_modules/torch/nn/init.html#kaiming_uniform_>

  You can pass in `dtype` and `device` keyword arguments to control the data type and device of the tensor.
  Additionally, all other keyword arguments are passed to the constructor of the tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  print(Tensor.kaiming_uniform(2, 3).numpy())
  ```
  """
  bound = math.sqrt(3.0) * math.sqrt(2.0 / (1 + a ** 2)) / math.sqrt(prod(argfix(*shape)[1:]))
  return Tensor.uniform(*shape, low=-bound, high=bound, **kwargs)

kaiming_normal staticmethod ¤

kaiming_normal(*shape, a: float = 0.01, **kwargs) -> Tensor

https://pytorch.org/docs/stable/_modules/torch/nn/init.html#kaiming_normal_

You can pass in dtype and device keyword arguments to control the data type and device of the tensor. Additionally, all other keyword arguments are passed to the constructor of the tensor.

Tensor.manual_seed(42)
print(Tensor.kaiming_normal(2, 3).numpy())
[[ 0.7984  0.3819  0.4512]
 [-0.2685 -0.6985  0.2247]]
Source code in tinygrad/tensor.py
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
@staticmethod
def kaiming_normal(*shape, a:float = 0.01, **kwargs) -> Tensor:
  """
  <https://pytorch.org/docs/stable/_modules/torch/nn/init.html#kaiming_normal_>

  You can pass in `dtype` and `device` keyword arguments to control the data type and device of the tensor.
  Additionally, all other keyword arguments are passed to the constructor of the tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  print(Tensor.kaiming_normal(2, 3).numpy())
  ```
  """
  std = math.sqrt(2.0 / (1 + a ** 2)) / math.sqrt(prod(argfix(*shape)[1:]))
  return Tensor.normal(*shape, mean=0.0, std=std, **kwargs)