Creation
Creation (basic)¤
empty
staticmethod
¤
empty(*shape, **kwargs)
Creates an empty tensor with the given shape.
You can pass in dtype
and device
keyword arguments to control the data type and device of the tensor.
Additionally, all other keyword arguments are passed to the constructor of the tensor.
t = Tensor.empty(2, 3)
print(t.shape)
(2, 3)
Source code in tinygrad/tensor.py
394 395 396 397 398 399 400 401 402 403 404 405 406 407 |
|
zeros
staticmethod
¤
zeros(*shape, **kwargs) -> Tensor
Creates a tensor with the given shape, filled with zeros.
You can pass in dtype
and device
keyword arguments to control the data type and device of the tensor.
Additionally, all other keyword arguments are passed to the constructor of the tensor.
print(Tensor.zeros(2, 3).numpy())
[[0. 0. 0.]
[0. 0. 0.]]
print(Tensor.zeros(2, 3, dtype=dtypes.int32).numpy())
[[0 0 0]
[0 0 0]]
Source code in tinygrad/tensor.py
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 |
|
ones
staticmethod
¤
ones(*shape, **kwargs) -> Tensor
Creates a tensor with the given shape, filled with ones.
You can pass in dtype
and device
keyword arguments to control the data type and device of the tensor.
Additionally, all other keyword arguments are passed to the constructor of the tensor.
print(Tensor.ones(2, 3).numpy())
[[1. 1. 1.]
[1. 1. 1.]]
print(Tensor.ones(2, 3, dtype=dtypes.int32).numpy())
[[1 1 1]
[1 1 1]]
Source code in tinygrad/tensor.py
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 |
|
full
staticmethod
¤
Creates a tensor with the given shape, filled with the given value.
You can pass in dtype
and device
keyword arguments to control the data type and device of the tensor.
Additionally, all other keyword arguments are passed to the constructor of the tensor.
print(Tensor.full((2, 3), 42).numpy())
[[42 42 42]
[42 42 42]]
print(Tensor.full((2, 3), False).numpy())
[[False False False]
[False False False]]
Source code in tinygrad/tensor.py
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 |
|
arange
staticmethod
¤
arange(start, stop=None, step=1, **kwargs) -> Tensor
Returns a 1-D tensor of size ceil((stop - start) / step)
with values from [start, stop)
, with spacing between values given by step
.
If stop
is not specified, values are generated from [0, start)
with the given step
.
If stop
is specified, values are generated from [start, stop)
with the given step
.
You can pass in dtype
and device
keyword arguments to control the data type and device of the tensor.
Additionally, all other keyword arguments are passed to the constructor of the tensor.
print(Tensor.arange(5).numpy())
[0 1 2 3 4]
print(Tensor.arange(5, 10).numpy())
[5 6 7 8 9]
print(Tensor.arange(5, 10, 2).numpy())
[5 7 9]
print(Tensor.arange(5.5, 10, 2).numpy())
[5.5 7.5 9.5]
Source code in tinygrad/tensor.py
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 |
|
eye
staticmethod
¤
Returns a 2-D tensor with n
rows and m
columns, with ones on the diagonal and zeros elsewhere.
You can pass in dtype
and device
keyword arguments to control the data type and device of the tensor.
Additionally, all other keyword arguments are passed to the constructor of the tensor.
print(Tensor.eye(3).numpy())
[[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.]]
print(Tensor.eye(2, 4).numpy())
[[1. 0. 0. 0.]
[0. 1. 0. 0.]]
Source code in tinygrad/tensor.py
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 |
|
full_like
¤
Creates a tensor with the same shape as self
, filled with the given value.
If dtype
is not specified, the dtype of self
is used.
You can pass in the device
keyword argument to control device of the tensor.
Additionally, all other keyword arguments are passed to the constructor of the tensor.
t = Tensor.ones(2, 3)
print(Tensor.full_like(t, 42).numpy())
[[42. 42. 42.]
[42. 42. 42.]]
Source code in tinygrad/tensor.py
627 628 629 630 631 632 633 634 635 636 637 638 639 640 |
|
zeros_like
¤
zeros_like(**kwargs) -> Tensor
Creates a tensor with the same shape as self
, filled with zeros.
You can pass in dtype
and device
keyword arguments to control the data type and device of the tensor.
Additionally, all other keyword arguments are passed to the constructor of the tensor.
t = Tensor.ones(2, 3)
print(Tensor.zeros_like(t).numpy())
[[0. 0. 0.]
[0. 0. 0.]]
Source code in tinygrad/tensor.py
642 643 644 645 646 647 648 649 650 651 652 653 654 |
|
ones_like
¤
ones_like(**kwargs) -> Tensor
Creates a tensor with the same shape as self
, filled with ones.
You can pass in dtype
and device
keyword arguments to control the data type and device of the tensor.
Additionally, all other keyword arguments are passed to the constructor of the tensor.
t = Tensor.zeros(2, 3)
print(Tensor.ones_like(t).numpy())
[[1. 1. 1.]
[1. 1. 1.]]
Source code in tinygrad/tensor.py
656 657 658 659 660 661 662 663 664 665 666 667 668 |
|
Creation (external)¤
from_blob
staticmethod
¤
Exposes the pointer as a Tensor without taking ownership of the original data. The pointer must remain valid for the entire lifetime of the created Tensor.
You can pass in dtype
and device
keyword arguments to control the data type and device of the tensor.
Additionally, all other keyword arguments are passed to the constructor of the tensor.
Source code in tinygrad/tensor.py
409 410 411 412 413 414 415 416 417 418 419 420 421 422 |
|
from_url
staticmethod
¤
Create a Tensor from a URL.
This is the preferred way to access Internet resources. It currently returns a DISK Tensor, but in the future it may return an HTTP Tensor. This also will soon become lazy (when possible) and not print progress without DEBUG.
THe gunzip
flag will gzip extract the resource and return an extracted Tensor.
Source code in tinygrad/tensor.py
424 425 426 427 428 429 430 431 432 433 434 435 |
|
Creation (random)¤
manual_seed
staticmethod
¤
manual_seed(seed=0)
Sets the seed for random operations.
Tensor.manual_seed(42)
print(Tensor.rand(5).numpy())
print(Tensor.rand(5).numpy())
[0.997 0.5899 0.2225 0.7551 0.9057]
[0.6162 0.6213 0.9791 0.7851 0.4178]
Tensor.manual_seed(42) # reset to the same seed
print(Tensor.rand(5).numpy())
print(Tensor.rand(5).numpy())
[0.997 0.5899 0.2225 0.7551 0.9057]
[0.6162 0.6213 0.9791 0.7851 0.4178]
Source code in tinygrad/tensor.py
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 |
|
rand
staticmethod
¤
rand(
*shape,
device: Optional[str] = None,
dtype: Optional[DTypeLike] = None,
contiguous: bool = True,
**kwargs
) -> Tensor
Creates a tensor with the given shape, filled with random values from a uniform distribution over the interval [0, 1)
.
You can pass in dtype
and device
keyword arguments to control the data type and device of the tensor.
Additionally, all other keyword arguments are passed to the constructor of the tensor.
Tensor.manual_seed(42)
t = Tensor.rand(2, 3)
print(t.numpy())
[[0.997 0.5899 0.2225]
[0.7551 0.9057 0.8649]]
Source code in tinygrad/tensor.py
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 |
|
randn
staticmethod
¤
Creates a tensor with the given shape, filled with random values from a normal distribution with mean 0
and standard deviation 1
.
If dtype
is not specified, the default type is used.
You can pass in the device
keyword argument to control device of the tensor.
Additionally, all other keyword arguments are passed to the constructor of the tensor.
Tensor.manual_seed(42)
print(Tensor.randn(2, 3).numpy())
[[ 0.9779 0.4678 0.5526]
[-0.3288 -0.8555 0.2753]]
Source code in tinygrad/tensor.py
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 |
|
randint
staticmethod
¤
randint(*shape, low=0, high=10, **kwargs) -> Tensor
Creates a tensor with the given shape, filled with random integer values generated uniformly from the interval [low, high)
.
If dtype
is not specified, the default type is used.
You can pass in the device
keyword argument to control device of the tensor.
Additionally, all other keyword arguments are passed to the constructor of the tensor.
Tensor.manual_seed(42)
print(Tensor.randint(2, 3, low=5, high=10).numpy())
[[9 7 6]
[8 9 9]]
Source code in tinygrad/tensor.py
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 |
|
normal
staticmethod
¤
normal(*shape, mean=0.0, std=1.0, **kwargs) -> Tensor
Creates a tensor with the given shape, filled with random values from a normal distribution with the given mean
and standard deviation std
.
You can pass in dtype
and device
keyword arguments to control the data type and device of the tensor.
Additionally, all other keyword arguments are passed to the constructor of the tensor.
Tensor.manual_seed(42)
print(Tensor.normal(2, 3, mean=10, std=2).numpy())
[[11.9557 10.9356 11.1053]
[ 9.3423 8.289 10.5505]]
Source code in tinygrad/tensor.py
733 734 735 736 737 738 739 740 741 742 743 744 745 746 |
|
uniform
staticmethod
¤
uniform(*shape, low=0.0, high=1.0, **kwargs) -> Tensor
Creates a tensor with the given shape, filled with random values from a uniform distribution over the interval [low, high)
.
You can pass in dtype
and device
keyword arguments to control the data type and device of the tensor.
Additionally, all other keyword arguments are passed to the constructor of the tensor.
Tensor.manual_seed(42)
print(Tensor.uniform(2, 3, low=2, high=10).numpy())
[[9.9763 6.7193 3.7804]
[8.0404 9.2452 8.9191]]
Source code in tinygrad/tensor.py
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 |
|
scaled_uniform
staticmethod
¤
scaled_uniform(*shape, **kwargs) -> Tensor
Creates a tensor with the given shape, filled with random values from a uniform distribution
over the interval [-prod(shape)**-0.5, prod(shape)**-0.5)
.
You can pass in dtype
and device
keyword arguments to control the data type and device of the tensor.
Additionally, all other keyword arguments are passed to the constructor of the tensor.
Tensor.manual_seed(42)
print(Tensor.scaled_uniform(2, 3).numpy())
[[ 0.4058 0.0734 -0.2265]
[ 0.2082 0.3312 0.2979]]
Source code in tinygrad/tensor.py
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 |
|
glorot_uniform
staticmethod
¤
glorot_uniform(*shape, **kwargs) -> Tensor
https://www.tensorflow.org/api_docs/python/tf/keras/initializers/GlorotUniform
You can pass in dtype
and device
keyword arguments to control the data type and device of the tensor.
Additionally, all other keyword arguments are passed to the constructor of the tensor.
Tensor.manual_seed(42)
print(Tensor.glorot_uniform(2, 3).numpy())
[[ 1.0889 0.197 -0.6079]
[ 0.5588 0.8887 0.7994]]
Source code in tinygrad/tensor.py
781 782 783 784 785 786 787 788 789 790 791 792 793 794 |
|
kaiming_uniform
staticmethod
¤
https://pytorch.org/docs/stable/_modules/torch/nn/init.html#kaiming_uniform_
You can pass in dtype
and device
keyword arguments to control the data type and device of the tensor.
Additionally, all other keyword arguments are passed to the constructor of the tensor.
Tensor.manual_seed(42)
print(Tensor.kaiming_uniform(2, 3).numpy())
[[ 1.4058 0.2543 -0.7847]
[ 0.7214 1.1473 1.032 ]]
Source code in tinygrad/tensor.py
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 |
|
kaiming_normal
staticmethod
¤
https://pytorch.org/docs/stable/_modules/torch/nn/init.html#kaiming_normal_
You can pass in dtype
and device
keyword arguments to control the data type and device of the tensor.
Additionally, all other keyword arguments are passed to the constructor of the tensor.
Tensor.manual_seed(42)
print(Tensor.kaiming_normal(2, 3).numpy())
[[ 0.7984 0.3819 0.4512]
[-0.2685 -0.6985 0.2247]]
Source code in tinygrad/tensor.py
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 |
|