Skip to content

Creation

Creation (basic)¤

empty staticmethod ¤

empty(*shape, **kwargs)

Creates an empty tensor with the given shape.

You can pass in dtype and device keyword arguments to control the data type and device of the tensor. Additionally, all other keyword arguments are passed to the constructor of the tensor.

t = Tensor.empty(2, 3)
print(t.shape)
(2, 3)
Source code in tinygrad/tensor.py
386
387
388
389
390
391
392
393
394
395
396
397
398
399
@staticmethod
def empty(*shape, **kwargs):
  """
  Creates an empty tensor with the given shape.

  You can pass in `dtype` and `device` keyword arguments to control the data type and device of the tensor.
  Additionally, all other keyword arguments are passed to the constructor of the tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor.empty(2, 3)
  print(t.shape)
  ```
  """
  return Tensor._metaop(MetaOps.EMPTY, argfix(*shape), **kwargs)

zeros staticmethod ¤

zeros(*shape, **kwargs) -> Tensor

Creates a tensor with the given shape, filled with zeros.

You can pass in dtype and device keyword arguments to control the data type and device of the tensor. Additionally, all other keyword arguments are passed to the constructor of the tensor.

print(Tensor.zeros(2, 3).numpy())
[[0. 0. 0.]
 [0. 0. 0.]]
print(Tensor.zeros(2, 3, dtype=dtypes.int32).numpy())
[[0 0 0]
 [0 0 0]]

Source code in tinygrad/tensor.py
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
@staticmethod
def zeros(*shape, **kwargs) -> Tensor:
  """
  Creates a tensor with the given shape, filled with zeros.

  You can pass in `dtype` and `device` keyword arguments to control the data type and device of the tensor.
  Additionally, all other keyword arguments are passed to the constructor of the tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor.zeros(2, 3).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor.zeros(2, 3, dtype=dtypes.int32).numpy())
  ```
  """
  return Tensor.full(argfix(*shape), 0.0, **kwargs)

ones staticmethod ¤

ones(*shape, **kwargs) -> Tensor

Creates a tensor with the given shape, filled with ones.

You can pass in dtype and device keyword arguments to control the data type and device of the tensor. Additionally, all other keyword arguments are passed to the constructor of the tensor.

print(Tensor.ones(2, 3).numpy())
[[1. 1. 1.]
 [1. 1. 1.]]
print(Tensor.ones(2, 3, dtype=dtypes.int32).numpy())
[[1 1 1]
 [1 1 1]]

Source code in tinygrad/tensor.py
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
@staticmethod
def ones(*shape, **kwargs) -> Tensor:
  """
  Creates a tensor with the given shape, filled with ones.

  You can pass in `dtype` and `device` keyword arguments to control the data type and device of the tensor.
  Additionally, all other keyword arguments are passed to the constructor of the tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor.ones(2, 3).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor.ones(2, 3, dtype=dtypes.int32).numpy())
  ```
  """
  return Tensor.full(argfix(*shape), 1.0, **kwargs)

full staticmethod ¤

full(
    shape: Tuple[sint, ...], fill_value: ConstType, **kwargs
) -> Tensor

Creates a tensor with the given shape, filled with the given value.

You can pass in dtype and device keyword arguments to control the data type and device of the tensor. Additionally, all other keyword arguments are passed to the constructor of the tensor.

print(Tensor.full((2, 3), 42).numpy())
[[42 42 42]
 [42 42 42]]
print(Tensor.full((2, 3), False).numpy())
[[False False False]
 [False False False]]

Source code in tinygrad/tensor.py
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
@staticmethod
def full(shape:Tuple[sint, ...], fill_value:ConstType, **kwargs) -> Tensor:
  """
  Creates a tensor with the given shape, filled with the given value.

  You can pass in `dtype` and `device` keyword arguments to control the data type and device of the tensor.
  Additionally, all other keyword arguments are passed to the constructor of the tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor.full((2, 3), 42).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor.full((2, 3), False).numpy())
  ```
  """
  return Tensor(fill_value, **kwargs).reshape((1, )*len(new_shape := argfix(shape))).expand(new_shape)

arange staticmethod ¤

arange(start, stop=None, step=1, **kwargs) -> Tensor

Returns a 1-D tensor of size ceil((stop - start) / step) with values from [start, stop), with spacing between values given by step.

If stop is not specified, values are generated from [0, start) with the given step.

If stop is specified, values are generated from [start, stop) with the given step.

You can pass in dtype and device keyword arguments to control the data type and device of the tensor. Additionally, all other keyword arguments are passed to the constructor of the tensor.

print(Tensor.arange(5).numpy())
[0 1 2 3 4]
print(Tensor.arange(5, 10).numpy())
[5 6 7 8 9]
print(Tensor.arange(5, 10, 2).numpy())
[5 7 9]
print(Tensor.arange(5.5, 10, 2).numpy())
[5.5 7.5 9.5]

Source code in tinygrad/tensor.py
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
@staticmethod
def arange(start, stop=None, step=1, **kwargs) -> Tensor:
  """
  Returns a 1-D tensor of size `ceil((stop - start) / step)` with values from `[start, stop)`, with spacing between values given by `step`.

  If `stop` is not specified, values are generated from `[0, start)` with the given `step`.

  If `stop` is specified, values are generated from `[start, stop)` with the given `step`.

  You can pass in `dtype` and `device` keyword arguments to control the data type and device of the tensor.
  Additionally, all other keyword arguments are passed to the constructor of the tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor.arange(5).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor.arange(5, 10).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor.arange(5, 10, 2).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor.arange(5.5, 10, 2).numpy())
  ```
  """
  if stop is None: stop, start = start, 0
  assert all(isinstance(s, (int, float)) for s in (start, stop, step)), f"symbolic arange not supported {start=}, {stop=}, {step=}"
  dtype = kwargs.pop("dtype", dtypes.default_float if any(isinstance(x, float) for x in (start, stop, step)) else dtypes.default_int)
  # NOTE: this matches numpy, torch raises RuntimeError if stop-start and step have different signs
  if (stop-start)/step <= 0: return Tensor([], dtype=dtype, **kwargs)
  return (Tensor.full((math.ceil((stop-start)/step),), step, dtype=dtype, **kwargs)._cumsum() + (start - step)).cast(dtype)

eye staticmethod ¤

eye(n: int, m: Optional[int] = None, **kwargs) -> Tensor

Returns a 2-D tensor with n rows and m columns, with ones on the diagonal and zeros elsewhere.

You can pass in dtype and device keyword arguments to control the data type and device of the tensor. Additionally, all other keyword arguments are passed to the constructor of the tensor.

print(Tensor.eye(3).numpy())
[[1. 0. 0.]
 [0. 1. 0.]
 [0. 0. 1.]]
print(Tensor.eye(2, 4).numpy())
[[1. 0. 0. 0.]
 [0. 1. 0. 0.]]
Source code in tinygrad/tensor.py
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
@staticmethod
def eye(n:int, m:Optional[int]=None, **kwargs) -> Tensor:
  """
  Returns a 2-D tensor with `n` rows and `m` columns, with ones on the diagonal and zeros elsewhere.

  You can pass in `dtype` and `device` keyword arguments to control the data type and device of the tensor.
  Additionally, all other keyword arguments are passed to the constructor of the tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor.eye(3).numpy())
  ```

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor.eye(2, 4).numpy())
  ```
  """
  if n < 0 or (m is not None and m < 0): raise ValueError(f"cannot have negative {n=}, {m=}")
  x = Tensor.ones((n,1),**kwargs).pad((None,(0,n))).flatten().shrink(((0,n*n),)).reshape(n,n)
  return x if m is None else x.pad((None, (0, m-n))) if m > n else x.shrink((None, (0, m)))

full_like ¤

full_like(fill_value: ConstType, **kwargs) -> Tensor

Creates a tensor with the same shape as self, filled with the given value. If dtype is not specified, the dtype of self is used.

You can pass in the device keyword argument to control device of the tensor. Additionally, all other keyword arguments are passed to the constructor of the tensor.

t = Tensor.ones(2, 3)
print(Tensor.full_like(t, 42).numpy())
[[42. 42. 42.]
 [42. 42. 42.]]
Source code in tinygrad/tensor.py
606
607
608
609
610
611
612
613
614
615
616
617
618
619
def full_like(self, fill_value:ConstType, **kwargs) -> Tensor:
  """
  Creates a tensor with the same shape as `self`, filled with the given value.
  If `dtype` is not specified, the dtype of `self` is used.

  You can pass in the `device` keyword argument to control device of the tensor.
  Additionally, all other keyword arguments are passed to the constructor of the tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor.ones(2, 3)
  print(Tensor.full_like(t, 42).numpy())
  ```
  """
  return Tensor.full(self.shape, fill_value, dtype=kwargs.pop("dtype", self.dtype), device=kwargs.pop("device", self.device), **kwargs)

zeros_like ¤

zeros_like(**kwargs) -> Tensor

Creates a tensor with the same shape as self, filled with zeros.

You can pass in dtype and device keyword arguments to control the data type and device of the tensor. Additionally, all other keyword arguments are passed to the constructor of the tensor.

t = Tensor.ones(2, 3)
print(Tensor.zeros_like(t).numpy())
[[0. 0. 0.]
 [0. 0. 0.]]
Source code in tinygrad/tensor.py
621
622
623
624
625
626
627
628
629
630
631
632
633
def zeros_like(self, **kwargs) -> Tensor:
  """
  Creates a tensor with the same shape as `self`, filled with zeros.

  You can pass in `dtype` and `device` keyword arguments to control the data type and device of the tensor.
  Additionally, all other keyword arguments are passed to the constructor of the tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor.ones(2, 3)
  print(Tensor.zeros_like(t).numpy())
  ```
  """
  return self.full_like(0, **kwargs)

ones_like ¤

ones_like(**kwargs) -> Tensor

Creates a tensor with the same shape as self, filled with ones.

You can pass in dtype and device keyword arguments to control the data type and device of the tensor. Additionally, all other keyword arguments are passed to the constructor of the tensor.

t = Tensor.zeros(2, 3)
print(Tensor.ones_like(t).numpy())
[[1. 1. 1.]
 [1. 1. 1.]]
Source code in tinygrad/tensor.py
635
636
637
638
639
640
641
642
643
644
645
646
647
def ones_like(self, **kwargs) -> Tensor:
  """
  Creates a tensor with the same shape as `self`, filled with ones.

  You can pass in `dtype` and `device` keyword arguments to control the data type and device of the tensor.
  Additionally, all other keyword arguments are passed to the constructor of the tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor.zeros(2, 3)
  print(Tensor.ones_like(t).numpy())
  ```
  """
  return self.full_like(1, **kwargs)

from_blob staticmethod ¤

from_blob(
    ptr: int, shape: Tuple[int, ...], **kwargs
) -> Tensor

Exposes the pointer as a Tensor without taking ownership of the original data. The pointer must remain valid for the entire lifetime of the created Tensor.

You can pass in dtype and device keyword arguments to control the data type and device of the tensor. Additionally, all other keyword arguments are passed to the constructor of the tensor.

Source code in tinygrad/tensor.py
401
402
403
404
405
406
407
408
409
410
411
412
413
414
@staticmethod
def from_blob(ptr:int, shape:Tuple[int, ...], **kwargs) -> Tensor:
  """
  Exposes the pointer as a Tensor without taking ownership of the original data.
  The pointer must remain valid for the entire lifetime of the created Tensor.

  You can pass in `dtype` and `device` keyword arguments to control the data type and device of the tensor.
  Additionally, all other keyword arguments are passed to the constructor of the tensor.
  """

  r = Tensor._metaop(MetaOps.EMPTY, shape, **kwargs)
  r.lazydata.buffer.allocate(external_ptr=ptr)
  del r.lazydata.srcs # fake realize
  return r

Creation (random)¤

manual_seed staticmethod ¤

manual_seed(seed=0)

Sets the seed for random operations.

Tensor.manual_seed(42)
print(Tensor.rand(5).numpy())
print(Tensor.rand(5).numpy())
[0.997  0.5899 0.2225 0.7551 0.9057]
[0.6162 0.6213 0.9791 0.7851 0.4178]
Tensor.manual_seed(42)  # reset to the same seed
print(Tensor.rand(5).numpy())
print(Tensor.rand(5).numpy())
[0.997  0.5899 0.2225 0.7551 0.9057]
[0.6162 0.6213 0.9791 0.7851 0.4178]

Source code in tinygrad/tensor.py
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
@staticmethod
def manual_seed(seed=0):
  """
  Sets the seed for random operations.

  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  print(Tensor.rand(5).numpy())
  print(Tensor.rand(5).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)  # reset to the same seed
  print(Tensor.rand(5).numpy())
  print(Tensor.rand(5).numpy())
  ```
  """
  Tensor._seed, Tensor._device_seeds, Tensor._device_rng_counters = seed, {}, {}

rand staticmethod ¤

rand(
    *shape,
    device: Optional[str] = None,
    dtype: Optional[DTypeLike] = None,
    **kwargs
) -> Tensor

Creates a tensor with the given shape, filled with random values from a uniform distribution over the interval [0, 1).

You can pass in dtype and device keyword arguments to control the data type and device of the tensor. Additionally, all other keyword arguments are passed to the constructor of the tensor.

Tensor.manual_seed(42)
t = Tensor.rand(2, 3)
print(t.numpy())
[[0.997  0.5899 0.2225]
 [0.7551 0.9057 0.8649]]
Source code in tinygrad/tensor.py
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
@staticmethod
def rand(*shape, device:Optional[str]=None, dtype:Optional[DTypeLike]=None, **kwargs) -> Tensor:
  """
  Creates a tensor with the given shape, filled with random values from a uniform distribution over the interval `[0, 1)`.

  You can pass in `dtype` and `device` keyword arguments to control the data type and device of the tensor.
  Additionally, all other keyword arguments are passed to the constructor of the tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  t = Tensor.rand(2, 3)
  print(t.numpy())
  ```
  """
  if not dtypes.is_float(dtype := to_dtype(dtype or dtypes.default_float)): raise ValueError(f"rand only supports float dtypes, got {dtype}")
  if not all_int(shape:=argfix(*shape)) or not all(s >= 0 for s in shape): raise ValueError(f"invalid input {shape=}")
  if device is not None and not isinstance(device, str): raise ValueError(f"rand only supports single device, got {device=}")
  _device = device = Device.canonicalize(device)

  # when using MOCKGPU and NV generate rand on CLANG
  if getenv("MOCKGPU") and device.startswith("NV"): device = "CLANG"

  # generate per device seeds and rng counter if we haven't seen this device yet
  if device not in Tensor._device_seeds:
    Tensor._device_seeds[device] = int.from_bytes(hashlib.sha256(len(Tensor._device_seeds).to_bytes(4, "big")).digest(), "big") & 0xffffffff
    Tensor._device_rng_counters[device] = Tensor([0], device=device, dtype=dtypes.uint32, requires_grad=False)
    had_counter = False
  else: had_counter = True

  # if shape has 0, return zero tensor
  if (num := math.ceil(((num_ := prod(shape)) * dtype.itemsize) / 4)) == 0: return Tensor.zeros(shape, device=_device, dtype=dtype, **kwargs)

  # increment rng counter for devices
  if had_counter: Tensor._device_rng_counters[device].assign(Tensor._device_rng_counters[device] + num)

  # threefry random bits
  counts0 = (Tensor.arange(math.ceil(num / 2), device=device, dtype=dtypes.uint32, requires_grad=False)+Tensor._device_rng_counters[device])
  counts1 = counts0 + math.ceil(num / 2)
  bits = Tensor._threefry_random_bits(Tensor._seed, Tensor._device_seeds[device], counts0, counts1)[:num]

  # bitcast to uint with same number of bits
  _, nmant = dtypes.finfo(dtype)
  uint_dtype = {1: dtypes.uint8, 2: dtypes.uint16, 4: dtypes.uint32, 8: dtypes.uint64}[dtype.itemsize]
  bits = bits.bitcast(uint_dtype)
  # only randomize the mantissa bits and set the exponent to 1
  one = Tensor.ones_like(bits, device=bits.device, dtype=dtype).bitcast(uint_dtype)
  bits = bits.rshift((dtype.itemsize * 8) - nmant).bitwise_or(one)
  # bitcast back to the original dtype and reshape
  out = bits.bitcast(dtype)[:num_].sub(1).reshape(shape)

  # move back to the original device if we were using MOCKGPU
  if getenv("MOCKGPU") and _device: out = out.to(_device)

  out.requires_grad = kwargs.get("requires_grad")
  return out.contiguous()

randn staticmethod ¤

randn(
    *shape, dtype: Optional[DTypeLike] = None, **kwargs
) -> Tensor

Creates a tensor with the given shape, filled with random values from a normal distribution with mean 0 and standard deviation 1. If dtype is not specified, the default type is used.

You can pass in the device keyword argument to control device of the tensor. Additionally, all other keyword arguments are passed to the constructor of the tensor.

Tensor.manual_seed(42)
print(Tensor.randn(2, 3).numpy())
[[ 0.9779  0.4678  0.5526]
 [-0.3288 -0.8555  0.2753]]
Source code in tinygrad/tensor.py
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
@staticmethod
def randn(*shape, dtype:Optional[DTypeLike]=None, **kwargs) -> Tensor:
  """
  Creates a tensor with the given shape, filled with random values from a normal distribution with mean `0` and standard deviation `1`.
  If `dtype` is not specified, the default type is used.

  You can pass in the `device` keyword argument to control device of the tensor.
  Additionally, all other keyword arguments are passed to the constructor of the tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  print(Tensor.randn(2, 3).numpy())
  ```
  """
  # https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform
  src = Tensor.rand((2, *argfix(*shape)), **{**kwargs, "dtype": dtypes.float32})
  return src[0].mul(2*math.pi).cos().mul((1 - src[1]).log().mul(-2).sqrt()).cast(dtype or dtypes.default_float)

randint staticmethod ¤

randint(*shape, low=0, high=10, **kwargs) -> Tensor

Creates a tensor with the given shape, filled with random integer values generated uniformly from the interval [low, high). If dtype is not specified, the default type is used.

You can pass in the device keyword argument to control device of the tensor. Additionally, all other keyword arguments are passed to the constructor of the tensor.

Tensor.manual_seed(42)
print(Tensor.randint(2, 3, low=5, high=10).numpy())
[[9 7 6]
 [8 9 9]]
Source code in tinygrad/tensor.py
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
@staticmethod
def randint(*shape, low=0, high=10, **kwargs) -> Tensor:
  """
  Creates a tensor with the given shape, filled with random integer values generated uniformly from the interval `[low, high)`.
  If `dtype` is not specified, the default type is used.

  You can pass in the `device` keyword argument to control device of the tensor.
  Additionally, all other keyword arguments are passed to the constructor of the tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  print(Tensor.randint(2, 3, low=5, high=10).numpy())
  ```
  """
  if not isinstance(low, int) or not isinstance(high, int): raise TypeError(f"{low=} and {high=} must be integers")
  dtype = kwargs.pop("dtype", dtypes.int32)
  if not dtypes.is_int(dtype): raise TypeError(f"{dtype=} must be int")
  return Tensor.uniform(*shape, low=low, high=high, dtype=dtype, **kwargs)

normal staticmethod ¤

normal(*shape, mean=0.0, std=1.0, **kwargs) -> Tensor

Creates a tensor with the given shape, filled with random values from a normal distribution with the given mean and standard deviation std.

You can pass in dtype and device keyword arguments to control the data type and device of the tensor. Additionally, all other keyword arguments are passed to the constructor of the tensor.

Tensor.manual_seed(42)
print(Tensor.normal(2, 3, mean=10, std=2).numpy())
[[11.9557 10.9356 11.1053]
 [ 9.3423  8.289  10.5505]]
Source code in tinygrad/tensor.py
711
712
713
714
715
716
717
718
719
720
721
722
723
724
@staticmethod
def normal(*shape, mean=0.0, std=1.0, **kwargs) -> Tensor:
  """
  Creates a tensor with the given shape, filled with random values from a normal distribution with the given `mean` and standard deviation `std`.

  You can pass in `dtype` and `device` keyword arguments to control the data type and device of the tensor.
  Additionally, all other keyword arguments are passed to the constructor of the tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  print(Tensor.normal(2, 3, mean=10, std=2).numpy())
  ```
  """
  return (std * Tensor.randn(*shape, **kwargs)) + mean

uniform staticmethod ¤

uniform(*shape, low=0.0, high=1.0, **kwargs) -> Tensor

Creates a tensor with the given shape, filled with random values from a uniform distribution over the interval [low, high).

You can pass in dtype and device keyword arguments to control the data type and device of the tensor. Additionally, all other keyword arguments are passed to the constructor of the tensor.

Tensor.manual_seed(42)
print(Tensor.uniform(2, 3, low=2, high=10).numpy())
[[9.9763 6.7193 3.7804]
 [8.0404 9.2452 8.9191]]
Source code in tinygrad/tensor.py
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
@staticmethod
def uniform(*shape, low=0.0, high=1.0, **kwargs) -> Tensor:
  """
  Creates a tensor with the given shape, filled with random values from a uniform distribution over the interval `[low, high)`.

  You can pass in `dtype` and `device` keyword arguments to control the data type and device of the tensor.
  Additionally, all other keyword arguments are passed to the constructor of the tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  print(Tensor.uniform(2, 3, low=2, high=10).numpy())
  ```
  """
  dtype = kwargs.pop("dtype", dtypes.default_float)
  return ((high-low) * Tensor.rand(*shape, **kwargs)).cast(dtype) + low

scaled_uniform staticmethod ¤

scaled_uniform(*shape, **kwargs) -> Tensor

Creates a tensor with the given shape, filled with random values from a uniform distribution over the interval [-prod(shape)**-0.5, prod(shape)**-0.5).

You can pass in dtype and device keyword arguments to control the data type and device of the tensor. Additionally, all other keyword arguments are passed to the constructor of the tensor.

Tensor.manual_seed(42)
print(Tensor.scaled_uniform(2, 3).numpy())
[[ 0.4058  0.0734 -0.2265]
 [ 0.2082  0.3312  0.2979]]
Source code in tinygrad/tensor.py
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
@staticmethod
def scaled_uniform(*shape, **kwargs) -> Tensor:
  """
  Creates a tensor with the given shape, filled with random values from a uniform distribution
  over the interval `[-prod(shape)**-0.5, prod(shape)**-0.5)`.

  You can pass in `dtype` and `device` keyword arguments to control the data type and device of the tensor.
  Additionally, all other keyword arguments are passed to the constructor of the tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  print(Tensor.scaled_uniform(2, 3).numpy())
  ```
  """
  return Tensor.uniform(*shape, low=-1.0, high=1.0, **kwargs).mul(prod(argfix(*shape))**-0.5)

glorot_uniform staticmethod ¤

glorot_uniform(*shape, **kwargs) -> Tensor

https://www.tensorflow.org/api_docs/python/tf/keras/initializers/GlorotUniform

You can pass in dtype and device keyword arguments to control the data type and device of the tensor. Additionally, all other keyword arguments are passed to the constructor of the tensor.

Tensor.manual_seed(42)
print(Tensor.glorot_uniform(2, 3).numpy())
[[ 1.0889  0.197  -0.6079]
 [ 0.5588  0.8887  0.7994]]
Source code in tinygrad/tensor.py
759
760
761
762
763
764
765
766
767
768
769
770
771
772
@staticmethod
def glorot_uniform(*shape, **kwargs) -> Tensor:
  """
  <https://www.tensorflow.org/api_docs/python/tf/keras/initializers/GlorotUniform>

  You can pass in `dtype` and `device` keyword arguments to control the data type and device of the tensor.
  Additionally, all other keyword arguments are passed to the constructor of the tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  print(Tensor.glorot_uniform(2, 3).numpy())
  ```
  """
  return Tensor.uniform(*shape, low=-1.0, high=1.0, **kwargs).mul((6/(argfix(*shape)[0]+prod(argfix(*shape)[1:])))**0.5)

kaiming_uniform staticmethod ¤

kaiming_uniform(
    *shape, a: float = 0.01, **kwargs
) -> Tensor

https://pytorch.org/docs/stable/_modules/torch/nn/init.html#kaiming_uniform_

You can pass in dtype and device keyword arguments to control the data type and device of the tensor. Additionally, all other keyword arguments are passed to the constructor of the tensor.

Tensor.manual_seed(42)
print(Tensor.kaiming_uniform(2, 3).numpy())
[[ 1.4058  0.2543 -0.7847]
 [ 0.7214  1.1473  1.032 ]]
Source code in tinygrad/tensor.py
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
@staticmethod
def kaiming_uniform(*shape, a:float = 0.01, **kwargs) -> Tensor:
  """
  <https://pytorch.org/docs/stable/_modules/torch/nn/init.html#kaiming_uniform_>

  You can pass in `dtype` and `device` keyword arguments to control the data type and device of the tensor.
  Additionally, all other keyword arguments are passed to the constructor of the tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  print(Tensor.kaiming_uniform(2, 3).numpy())
  ```
  """
  bound = math.sqrt(3.0) * math.sqrt(2.0 / (1 + a ** 2)) / math.sqrt(prod(argfix(*shape)[1:]))
  return Tensor.uniform(*shape, low=-bound, high=bound, **kwargs)

kaiming_normal staticmethod ¤

kaiming_normal(*shape, a: float = 0.01, **kwargs) -> Tensor

https://pytorch.org/docs/stable/_modules/torch/nn/init.html#kaiming_normal_

You can pass in dtype and device keyword arguments to control the data type and device of the tensor. Additionally, all other keyword arguments are passed to the constructor of the tensor.

Tensor.manual_seed(42)
print(Tensor.kaiming_normal(2, 3).numpy())
[[ 0.7984  0.3819  0.4512]
 [-0.2685 -0.6985  0.2247]]
Source code in tinygrad/tensor.py
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
@staticmethod
def kaiming_normal(*shape, a:float = 0.01, **kwargs) -> Tensor:
  """
  <https://pytorch.org/docs/stable/_modules/torch/nn/init.html#kaiming_normal_>

  You can pass in `dtype` and `device` keyword arguments to control the data type and device of the tensor.
  Additionally, all other keyword arguments are passed to the constructor of the tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  print(Tensor.kaiming_normal(2, 3).numpy())
  ```
  """
  std = math.sqrt(2.0 / (1 + a ** 2)) / math.sqrt(prod(argfix(*shape)[1:]))
  return Tensor.normal(*shape, mean=0.0, std=std, **kwargs)