Skip to content

Creation

Creation (basic)¤

empty staticmethod ¤

empty(*shape, **kwargs)

Creates an empty tensor with the given shape.

You can pass in dtype and device keyword arguments to control the data type and device of the tensor. Additionally, all other keyword arguments are passed to the constructor of the tensor.

t = Tensor.empty(2, 3)
print(t.shape)
(2, 3)
Source code in tinygrad/tensor.py
408
409
410
411
412
413
414
415
416
417
418
419
420
421
@staticmethod
def empty(*shape, **kwargs):
  """
  Creates an empty tensor with the given shape.

  You can pass in `dtype` and `device` keyword arguments to control the data type and device of the tensor.
  Additionally, all other keyword arguments are passed to the constructor of the tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor.empty(2, 3)
  print(t.shape)
  ```
  """
  return Tensor._metaop(Ops.EMPTY, argfix(*shape), **kwargs)

zeros staticmethod ¤

zeros(*shape, **kwargs) -> Tensor

Creates a tensor with the given shape, filled with zeros.

You can pass in dtype and device keyword arguments to control the data type and device of the tensor. Additionally, all other keyword arguments are passed to the constructor of the tensor.

print(Tensor.zeros(2, 3).numpy())
[[0. 0. 0.]
 [0. 0. 0.]]
print(Tensor.zeros(2, 3, dtype=dtypes.int32).numpy())
[[0 0 0]
 [0 0 0]]

Source code in tinygrad/tensor.py
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
@staticmethod
def zeros(*shape, **kwargs) -> Tensor:
  """
  Creates a tensor with the given shape, filled with zeros.

  You can pass in `dtype` and `device` keyword arguments to control the data type and device of the tensor.
  Additionally, all other keyword arguments are passed to the constructor of the tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor.zeros(2, 3).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor.zeros(2, 3, dtype=dtypes.int32).numpy())
  ```
  """
  return Tensor.full(argfix(*shape), 0.0, **kwargs)

ones staticmethod ¤

ones(*shape, **kwargs) -> Tensor

Creates a tensor with the given shape, filled with ones.

You can pass in dtype and device keyword arguments to control the data type and device of the tensor. Additionally, all other keyword arguments are passed to the constructor of the tensor.

print(Tensor.ones(2, 3).numpy())
[[1. 1. 1.]
 [1. 1. 1.]]
print(Tensor.ones(2, 3, dtype=dtypes.int32).numpy())
[[1 1 1]
 [1 1 1]]

Source code in tinygrad/tensor.py
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
@staticmethod
def ones(*shape, **kwargs) -> Tensor:
  """
  Creates a tensor with the given shape, filled with ones.

  You can pass in `dtype` and `device` keyword arguments to control the data type and device of the tensor.
  Additionally, all other keyword arguments are passed to the constructor of the tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor.ones(2, 3).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor.ones(2, 3, dtype=dtypes.int32).numpy())
  ```
  """
  return Tensor.full(argfix(*shape), 1.0, **kwargs)

full staticmethod ¤

full(
    shape: tuple[sint, ...], fill_value: ConstType, **kwargs
) -> Tensor

Creates a tensor with the given shape, filled with the given value.

You can pass in dtype and device keyword arguments to control the data type and device of the tensor. Additionally, all other keyword arguments are passed to the constructor of the tensor.

print(Tensor.full((2, 3), 42).numpy())
[[42 42 42]
 [42 42 42]]
print(Tensor.full((2, 3), False).numpy())
[[False False False]
 [False False False]]

Source code in tinygrad/tensor.py
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
@staticmethod
def full(shape:tuple[sint, ...], fill_value:ConstType, **kwargs) -> Tensor:
  """
  Creates a tensor with the given shape, filled with the given value.

  You can pass in `dtype` and `device` keyword arguments to control the data type and device of the tensor.
  Additionally, all other keyword arguments are passed to the constructor of the tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor.full((2, 3), 42).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor.full((2, 3), False).numpy())
  ```
  """
  return Tensor(fill_value, **kwargs).reshape((1, )*len(new_shape := argfix(shape))).expand(new_shape)

arange staticmethod ¤

arange(start, stop=None, step=1, **kwargs) -> Tensor

Returns a 1-D tensor of size ceil((stop - start) / step) with values from [start, stop), with spacing between values given by step.

If stop is not specified, values are generated from [0, start) with the given step.

If stop is specified, values are generated from [start, stop) with the given step.

You can pass in dtype and device keyword arguments to control the data type and device of the tensor. Additionally, all other keyword arguments are passed to the constructor of the tensor.

print(Tensor.arange(5).numpy())
[0 1 2 3 4]
print(Tensor.arange(5, 10).numpy())
[5 6 7 8 9]
print(Tensor.arange(5, 10, 2).numpy())
[5 7 9]
print(Tensor.arange(5.5, 10, 2).numpy())
[5.5 7.5 9.5]

Source code in tinygrad/tensor.py
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
@staticmethod
def arange(start, stop=None, step=1, **kwargs) -> Tensor:
  """
  Returns a 1-D tensor of size `ceil((stop - start) / step)` with values from `[start, stop)`, with spacing between values given by `step`.

  If `stop` is not specified, values are generated from `[0, start)` with the given `step`.

  If `stop` is specified, values are generated from `[start, stop)` with the given `step`.

  You can pass in `dtype` and `device` keyword arguments to control the data type and device of the tensor.
  Additionally, all other keyword arguments are passed to the constructor of the tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor.arange(5).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor.arange(5, 10).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor.arange(5, 10, 2).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor.arange(5.5, 10, 2).numpy())
  ```
  """
  if stop is None: stop, start = start, 0
  dtype = kwargs.pop("dtype", dtypes.default_float if any(isinstance(x, float) for x in (start, stop, step)) else dtypes.default_int)
  # NOTE: this matches numpy, torch raises RuntimeError if stop-start and step have different signs
  if (output_len:=ceildiv(stop-start, step)) <= 0: return Tensor([], dtype=dtype, **kwargs)
  return (Tensor.full((output_len,), step, dtype=dtype, **kwargs)._cumalu(0, Ops.ADD) + (start - step)).cast(dtype)

linspace staticmethod ¤

linspace(
    start: Union[int, float],
    stop: Union[int, float],
    steps: int,
    **kwargs
) -> Tensor

Returns a 1-D tensor of steps evenly spaced values from start to stop, inclusive.

You can pass in dtype and device keyword arguments to control the data type and device of the tensor. Additionally, all other keyword arguments are passed to the constructor of the tensor.

print(Tensor.linspace(0, 10, 5).numpy())
[ 0.   2.5  5.   7.5 10. ]
print(Tensor.linspace(-1, 1, 5).numpy())
[-1.  -0.5  0.   0.5  1. ]

Source code in tinygrad/tensor.py
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
@staticmethod
def linspace(start:Union[int, float], stop:Union[int, float], steps:int, **kwargs) -> Tensor:
  """
  Returns a 1-D tensor of `steps` evenly spaced values from `start` to `stop`, inclusive.

  You can pass in `dtype` and `device` keyword arguments to control the data type and device of the tensor.
  Additionally, all other keyword arguments are passed to the constructor of the tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor.linspace(0, 10, 5).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor.linspace(-1, 1, 5).numpy())
  ```
  """
  if steps < 0: raise ValueError("number of steps must be non-negative")
  if (dtype := to_dtype(kwargs.pop("dtype", dtypes.default_float))) == dtypes.bool: raise ValueError("linspace with bool dtype is not supported")
  if steps == 1: return Tensor([start], dtype=dtype, **kwargs)
  return (start + Tensor.arange(steps, **kwargs) * ((stop - start) / (steps - 1))).cast(dtype)

eye staticmethod ¤

eye(n: int, m: Optional[int] = None, **kwargs) -> Tensor

Returns a 2-D tensor with n rows and m columns, with ones on the diagonal and zeros elsewhere.

You can pass in dtype and device keyword arguments to control the data type and device of the tensor. Additionally, all other keyword arguments are passed to the constructor of the tensor.

print(Tensor.eye(3).numpy())
[[1. 0. 0.]
 [0. 1. 0.]
 [0. 0. 1.]]
print(Tensor.eye(2, 4).numpy())
[[1. 0. 0. 0.]
 [0. 1. 0. 0.]]
Source code in tinygrad/tensor.py
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
@staticmethod
def eye(n:int, m:Optional[int]=None, **kwargs) -> Tensor:
  """
  Returns a 2-D tensor with `n` rows and `m` columns, with ones on the diagonal and zeros elsewhere.

  You can pass in `dtype` and `device` keyword arguments to control the data type and device of the tensor.
  Additionally, all other keyword arguments are passed to the constructor of the tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor.eye(3).numpy())
  ```

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor.eye(2, 4).numpy())
  ```
  """
  if n < 0 or (m is not None and m < 0): raise ValueError(f"cannot have negative {n=}, {m=}")
  x = Tensor.ones((n,1),**kwargs).pad((None,(0,n))).flatten().shrink(((0,n*n),)).reshape(n,n)
  return x if m is None else x.pad((None, (0, m-n))) if m > n else x.shrink((None, (0, m)))

full_like ¤

full_like(fill_value: ConstType, **kwargs) -> Tensor

Creates a tensor with the same shape as self, filled with the given value. If dtype is not specified, the dtype of self is used.

You can pass in the device keyword argument to control device of the tensor. Additionally, all other keyword arguments are passed to the constructor of the tensor.

t = Tensor.ones(2, 3)
print(Tensor.full_like(t, 42).numpy())
[[42. 42. 42.]
 [42. 42. 42.]]
Source code in tinygrad/tensor.py
659
660
661
662
663
664
665
666
667
668
669
670
671
672
def full_like(self, fill_value:ConstType, **kwargs) -> Tensor:
  """
  Creates a tensor with the same shape as `self`, filled with the given value.
  If `dtype` is not specified, the dtype of `self` is used.

  You can pass in the `device` keyword argument to control device of the tensor.
  Additionally, all other keyword arguments are passed to the constructor of the tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor.ones(2, 3)
  print(Tensor.full_like(t, 42).numpy())
  ```
  """
  return Tensor.full(self.shape, fill_value, dtype=kwargs.pop("dtype", self.dtype), device=kwargs.pop("device", self.device), **kwargs)

zeros_like ¤

zeros_like(**kwargs) -> Tensor

Creates a tensor with the same shape as self, filled with zeros.

You can pass in dtype and device keyword arguments to control the data type and device of the tensor. Additionally, all other keyword arguments are passed to the constructor of the tensor.

t = Tensor.ones(2, 3)
print(Tensor.zeros_like(t).numpy())
[[0. 0. 0.]
 [0. 0. 0.]]
Source code in tinygrad/tensor.py
674
675
676
677
678
679
680
681
682
683
684
685
686
def zeros_like(self, **kwargs) -> Tensor:
  """
  Creates a tensor with the same shape as `self`, filled with zeros.

  You can pass in `dtype` and `device` keyword arguments to control the data type and device of the tensor.
  Additionally, all other keyword arguments are passed to the constructor of the tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor.ones(2, 3)
  print(Tensor.zeros_like(t).numpy())
  ```
  """
  return self.full_like(0, **kwargs)

ones_like ¤

ones_like(**kwargs) -> Tensor

Creates a tensor with the same shape as self, filled with ones.

You can pass in dtype and device keyword arguments to control the data type and device of the tensor. Additionally, all other keyword arguments are passed to the constructor of the tensor.

t = Tensor.zeros(2, 3)
print(Tensor.ones_like(t).numpy())
[[1. 1. 1.]
 [1. 1. 1.]]
Source code in tinygrad/tensor.py
688
689
690
691
692
693
694
695
696
697
698
699
700
def ones_like(self, **kwargs) -> Tensor:
  """
  Creates a tensor with the same shape as `self`, filled with ones.

  You can pass in `dtype` and `device` keyword arguments to control the data type and device of the tensor.
  Additionally, all other keyword arguments are passed to the constructor of the tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor.zeros(2, 3)
  print(Tensor.ones_like(t).numpy())
  ```
  """
  return self.full_like(1, **kwargs)

Creation (external)¤

from_blob staticmethod ¤

from_blob(
    ptr: int, shape: tuple[int, ...], **kwargs
) -> Tensor

Exposes the pointer as a Tensor without taking ownership of the original data. The pointer must remain valid for the entire lifetime of the created Tensor.

You can pass in dtype and device keyword arguments to control the data type and device of the tensor. Additionally, all other keyword arguments are passed to the constructor of the tensor.

Source code in tinygrad/tensor.py
423
424
425
426
427
428
429
430
431
432
433
434
435
436
@staticmethod
def from_blob(ptr:int, shape:tuple[int, ...], **kwargs) -> Tensor:
  """
  Exposes the pointer as a Tensor without taking ownership of the original data.
  The pointer must remain valid for the entire lifetime of the created Tensor.

  You can pass in `dtype` and `device` keyword arguments to control the data type and device of the tensor.
  Additionally, all other keyword arguments are passed to the constructor of the tensor.
  """

  r = Tensor._metaop(Ops.EMPTY, shape, **kwargs)
  r.lazydata.buffer.allocate(external_ptr=ptr)
  r.lazydata.buf_uop_view()
  return r

from_url staticmethod ¤

from_url(
    url: str, gunzip: bool = False, **kwargs
) -> Tensor

Create a Tensor from a URL.

This is the preferred way to access Internet resources. It currently returns a DISK Tensor, but in the future it may return an HTTP Tensor. This also will soon become lazy (when possible) and not print progress without DEBUG.

THe gunzip flag will gzip extract the resource and return an extracted Tensor.

Source code in tinygrad/tensor.py
438
439
440
441
442
443
444
445
446
447
448
449
@staticmethod
def from_url(url:str, gunzip:bool=False, **kwargs) -> Tensor:
  """
  Create a Tensor from a URL.

  This is the preferred way to access Internet resources.
  It currently returns a DISK Tensor, but in the future it may return an HTTP Tensor.
  This also will soon become lazy (when possible) and not print progress without DEBUG.

  THe `gunzip` flag will gzip extract the resource and return an extracted Tensor.
  """
  return Tensor(fetch(url, gunzip=gunzip), **kwargs)

Creation (random)¤

manual_seed staticmethod ¤

manual_seed(seed=0)

Sets the seed for random operations.

Tensor.manual_seed(42)
print(Tensor.rand(5).numpy())
print(Tensor.rand(5).numpy())
[0.997  0.5899 0.2225 0.7551 0.9057]
[0.6162 0.6213 0.9791 0.7851 0.4178]
Tensor.manual_seed(42)  # reset to the same seed
print(Tensor.rand(5).numpy())
print(Tensor.rand(5).numpy())
[0.997  0.5899 0.2225 0.7551 0.9057]
[0.6162 0.6213 0.9791 0.7851 0.4178]

Source code in tinygrad/tensor.py
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
@staticmethod
def manual_seed(seed=0):
  """
  Sets the seed for random operations.

  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  print(Tensor.rand(5).numpy())
  print(Tensor.rand(5).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)  # reset to the same seed
  print(Tensor.rand(5).numpy())
  print(Tensor.rand(5).numpy())
  ```
  """
  Tensor._seed, Tensor._device_seeds, Tensor._device_rng_counters = seed, {}, {}

rand staticmethod ¤

rand(
    *shape,
    device: Optional[str] = None,
    dtype: Optional[DTypeLike] = None,
    contiguous: bool = True,
    **kwargs
) -> Tensor

Creates a tensor with the given shape, filled with random values from a uniform distribution over the interval [0, 1).

You can pass in dtype and device keyword arguments to control the data type and device of the tensor. Additionally, all other keyword arguments are passed to the constructor of the tensor.

Tensor.manual_seed(42)
t = Tensor.rand(2, 3)
print(t.numpy())
[[0.997  0.5899 0.2225]
 [0.7551 0.9057 0.8649]]
Source code in tinygrad/tensor.py
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
@staticmethod
def rand(*shape, device:Optional[str]=None, dtype:Optional[DTypeLike]=None, contiguous:bool=True, **kwargs) -> Tensor:
  """
  Creates a tensor with the given shape, filled with random values from a uniform distribution over the interval `[0, 1)`.

  You can pass in `dtype` and `device` keyword arguments to control the data type and device of the tensor.
  Additionally, all other keyword arguments are passed to the constructor of the tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  t = Tensor.rand(2, 3)
  print(t.numpy())
  ```
  """
  if not dtypes.is_float(dtype := to_dtype(dtype or dtypes.default_float)): raise ValueError(f"rand only supports float dtypes, got {dtype}")
  if not all_int(shape:=argfix(*shape)) or not all(s >= 0 for s in shape): raise ValueError(f"invalid input {shape=}")
  if device is not None and not isinstance(device, str): raise ValueError(f"rand only supports single device, got {device=}")
  _device = device = Device.canonicalize(device)

  # if shape has 0, return zero tensor
  if (numel := prod(shape)) == 0: return Tensor.zeros(shape, device=_device, dtype=dtype, **kwargs)
  num = ceildiv(numel * dtype.itemsize, 4)

  # when using MOCKGPU and NV generate rand on CLANG
  if getenv("MOCKGPU") and device.startswith("NV"): device = "CLANG"

  # generate per device seeds and rng counter if we haven't seen this device yet
  if device not in Tensor._device_seeds:
    Tensor._device_seeds[device] = Tensor(
      [int.from_bytes(hashlib.sha256(len(Tensor._device_seeds).to_bytes(4, "big")).digest(), "big"), Tensor._seed],
      device=device, dtype=dtypes.uint32, requires_grad=False)
    Tensor._device_rng_counters[device] = Tensor([0], device=device, dtype=dtypes.uint32, requires_grad=False)
  # increment rng counter for devices
  else: Tensor._device_rng_counters[device].assign(Tensor._device_rng_counters[device] + num).contiguous()

  # threefry random bits
  counts0 = (Tensor.arange(ceildiv(num, 2), device=device, dtype=dtypes.uint32, requires_grad=False)+Tensor._device_rng_counters[device])
  counts1 = counts0 + ceildiv(num, 2)
  bits = Tensor._threefry_random_bits(Tensor._device_seeds[device], counts0, counts1)[:num]

  # bitcast to uint with same number of bits
  _, nmant = dtypes.finfo(dtype)
  uint_dtype = {1: dtypes.uint8, 2: dtypes.uint16, 4: dtypes.uint32, 8: dtypes.uint64}[dtype.itemsize]
  bits = bits.bitcast(uint_dtype)
  # only randomize the mantissa bits and set the exponent to 1
  one = Tensor.ones_like(bits, device=bits.device, dtype=dtype).bitcast(uint_dtype)
  bits = bits.rshift((dtype.itemsize * 8) - nmant).bitwise_or(one)
  # bitcast back to the original dtype and reshape
  out = bits.bitcast(dtype)[:numel].sub(1).reshape(shape)

  # move back to the original device if we were using MOCKGPU
  if getenv("MOCKGPU") and _device: out = out.to(_device)

  out.requires_grad = kwargs.get("requires_grad")
  return out.contiguous() if contiguous else out

randn staticmethod ¤

randn(
    *shape,
    dtype: Optional[DTypeLike] = None,
    requires_grad: Optional[bool] = None,
    **kwargs
) -> Tensor

Creates a tensor with the given shape, filled with random values from a normal distribution with mean 0 and standard deviation 1. If dtype is not specified, the default type is used.

You can pass in the device keyword argument to control device of the tensor. Additionally, all other keyword arguments are passed to the constructor of the tensor.

Tensor.manual_seed(42)
print(Tensor.randn(2, 3).numpy())
[[ 0.9779  0.4678  0.5526]
 [-0.3288 -0.8555  0.2753]]
Source code in tinygrad/tensor.py
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
@staticmethod
def randn(*shape, dtype:Optional[DTypeLike]=None, requires_grad:Optional[bool]=None, **kwargs) -> Tensor:
  """
  Creates a tensor with the given shape, filled with random values from a normal distribution with mean `0` and standard deviation `1`.
  If `dtype` is not specified, the default type is used.

  You can pass in the `device` keyword argument to control device of the tensor.
  Additionally, all other keyword arguments are passed to the constructor of the tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  print(Tensor.randn(2, 3).numpy())
  ```
  """
  # https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform
  src = Tensor.rand((2, *argfix(*shape)), **{**kwargs, "dtype": dtypes.float32})
  return (src[0].mul(2*math.pi).cos().mul((1 - src[1]).log().mul(-2).sqrt()).cast(dtype or dtypes.default_float)).requires_grad_(requires_grad)

randint staticmethod ¤

randint(
    *shape, low=0, high=10, dtype=int32, **kwargs
) -> Tensor

Creates a tensor with the given shape, filled with random integer values generated uniformly from the interval [low, high). If dtype is not specified, the default type is used.

You can pass in the device keyword argument to control device of the tensor. Additionally, all other keyword arguments are passed to the constructor of the tensor.

Tensor.manual_seed(42)
print(Tensor.randint(2, 3, low=5, high=10).numpy())
[[9 7 6]
 [8 9 9]]
Source code in tinygrad/tensor.py
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
@staticmethod
def randint(*shape, low=0, high=10, dtype=dtypes.int32, **kwargs) -> Tensor:
  """
  Creates a tensor with the given shape, filled with random integer values generated uniformly from the interval `[low, high)`.
  If `dtype` is not specified, the default type is used.

  You can pass in the `device` keyword argument to control device of the tensor.
  Additionally, all other keyword arguments are passed to the constructor of the tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  print(Tensor.randint(2, 3, low=5, high=10).numpy())
  ```
  """
  if not isinstance(low, int) or not isinstance(high, int): raise TypeError(f"{low=} and {high=} must be integers")
  dtype = to_dtype(dtype)
  if not dtypes.is_int(dtype): raise TypeError(f"{dtype=} must be int")
  return Tensor.uniform(*shape, low=low, high=high, dtype=dtype, **kwargs)

normal staticmethod ¤

normal(
    *shape,
    mean=0.0,
    std=1.0,
    requires_grad: Optional[bool] = None,
    **kwargs
) -> Tensor

Creates a tensor with the given shape, filled with random values from a normal distribution with the given mean and standard deviation std.

You can pass in dtype and device keyword arguments to control the data type and device of the tensor. Additionally, all other keyword arguments are passed to the constructor of the tensor.

Tensor.manual_seed(42)
print(Tensor.normal(2, 3, mean=10, std=2).numpy())
[[11.9557 10.9356 11.1053]
 [ 9.3423  8.289  10.5505]]
Source code in tinygrad/tensor.py
762
763
764
765
766
767
768
769
770
771
772
773
774
775
@staticmethod
def normal(*shape, mean=0.0, std=1.0, requires_grad:Optional[bool]=None, **kwargs) -> Tensor:
  """
  Creates a tensor with the given shape, filled with random values from a normal distribution with the given `mean` and standard deviation `std`.

  You can pass in `dtype` and `device` keyword arguments to control the data type and device of the tensor.
  Additionally, all other keyword arguments are passed to the constructor of the tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  print(Tensor.normal(2, 3, mean=10, std=2).numpy())
  ```
  """
  return ((std * Tensor.randn(*shape, **kwargs)) + mean).requires_grad_(requires_grad)

uniform staticmethod ¤

uniform(
    *shape,
    low=0.0,
    high=1.0,
    dtype: Optional[DTypeLike] = None,
    requires_grad: Optional[bool] = None,
    **kwargs
) -> Tensor

Creates a tensor with the given shape, filled with random values from a uniform distribution over the interval [low, high).

You can pass in dtype and device keyword arguments to control the data type and device of the tensor. Additionally, all other keyword arguments are passed to the constructor of the tensor.

Tensor.manual_seed(42)
print(Tensor.uniform(2, 3, low=2, high=10).numpy())
[[9.9763 6.7193 3.7804]
 [8.0404 9.2452 8.9191]]
Source code in tinygrad/tensor.py
777
778
779
780
781
782
783
784
785
786
787
788
789
790
@staticmethod
def uniform(*shape, low=0.0, high=1.0, dtype:Optional[DTypeLike]=None, requires_grad:Optional[bool]=None, **kwargs) -> Tensor:
  """
  Creates a tensor with the given shape, filled with random values from a uniform distribution over the interval `[low, high)`.

  You can pass in `dtype` and `device` keyword arguments to control the data type and device of the tensor.
  Additionally, all other keyword arguments are passed to the constructor of the tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  print(Tensor.uniform(2, 3, low=2, high=10).numpy())
  ```
  """
  return (((high-low) * Tensor.rand(*shape, **kwargs)).cast(dtype or dtypes.default_float) + low).requires_grad_(requires_grad)

scaled_uniform staticmethod ¤

scaled_uniform(*shape, **kwargs) -> Tensor

Creates a tensor with the given shape, filled with random values from a uniform distribution over the interval [-prod(shape)**-0.5, prod(shape)**-0.5).

You can pass in dtype and device keyword arguments to control the data type and device of the tensor. Additionally, all other keyword arguments are passed to the constructor of the tensor.

Tensor.manual_seed(42)
print(Tensor.scaled_uniform(2, 3).numpy())
[[ 0.4058  0.0734 -0.2265]
 [ 0.2082  0.3312  0.2979]]
Source code in tinygrad/tensor.py
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
@staticmethod
def scaled_uniform(*shape, **kwargs) -> Tensor:
  """
  Creates a tensor with the given shape, filled with random values from a uniform distribution
  over the interval `[-prod(shape)**-0.5, prod(shape)**-0.5)`.

  You can pass in `dtype` and `device` keyword arguments to control the data type and device of the tensor.
  Additionally, all other keyword arguments are passed to the constructor of the tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  print(Tensor.scaled_uniform(2, 3).numpy())
  ```
  """
  return Tensor.uniform(*shape, low=-1.0, high=1.0, **kwargs).mul(prod(argfix(*shape))**-0.5)

glorot_uniform staticmethod ¤

glorot_uniform(*shape, **kwargs) -> Tensor

https://www.tensorflow.org/api_docs/python/tf/keras/initializers/GlorotUniform

You can pass in dtype and device keyword arguments to control the data type and device of the tensor. Additionally, all other keyword arguments are passed to the constructor of the tensor.

Tensor.manual_seed(42)
print(Tensor.glorot_uniform(2, 3).numpy())
[[ 1.0889  0.197  -0.6079]
 [ 0.5588  0.8887  0.7994]]
Source code in tinygrad/tensor.py
809
810
811
812
813
814
815
816
817
818
819
820
821
822
@staticmethod
def glorot_uniform(*shape, **kwargs) -> Tensor:
  """
  <https://www.tensorflow.org/api_docs/python/tf/keras/initializers/GlorotUniform>

  You can pass in `dtype` and `device` keyword arguments to control the data type and device of the tensor.
  Additionally, all other keyword arguments are passed to the constructor of the tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  print(Tensor.glorot_uniform(2, 3).numpy())
  ```
  """
  return Tensor.uniform(*shape, low=-1.0, high=1.0, **kwargs).mul((6/(argfix(*shape)[0]+prod(argfix(*shape)[1:])))**0.5)

kaiming_uniform staticmethod ¤

kaiming_uniform(
    *shape, a: float = 0.01, **kwargs
) -> Tensor

https://pytorch.org/docs/stable/_modules/torch/nn/init.html#kaiming_uniform_

You can pass in dtype and device keyword arguments to control the data type and device of the tensor. Additionally, all other keyword arguments are passed to the constructor of the tensor.

Tensor.manual_seed(42)
print(Tensor.kaiming_uniform(2, 3).numpy())
[[ 1.4058  0.2543 -0.7847]
 [ 0.7214  1.1473  1.032 ]]
Source code in tinygrad/tensor.py
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
@staticmethod
def kaiming_uniform(*shape, a:float = 0.01, **kwargs) -> Tensor:
  """
  <https://pytorch.org/docs/stable/_modules/torch/nn/init.html#kaiming_uniform_>

  You can pass in `dtype` and `device` keyword arguments to control the data type and device of the tensor.
  Additionally, all other keyword arguments are passed to the constructor of the tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  print(Tensor.kaiming_uniform(2, 3).numpy())
  ```
  """
  bound = math.sqrt(3.0) * math.sqrt(2.0 / (1 + a ** 2)) / math.sqrt(prod(argfix(*shape)[1:]))
  return Tensor.uniform(*shape, low=-bound, high=bound, **kwargs)

kaiming_normal staticmethod ¤

kaiming_normal(*shape, a: float = 0.01, **kwargs) -> Tensor

https://pytorch.org/docs/stable/_modules/torch/nn/init.html#kaiming_normal_

You can pass in dtype and device keyword arguments to control the data type and device of the tensor. Additionally, all other keyword arguments are passed to the constructor of the tensor.

Tensor.manual_seed(42)
print(Tensor.kaiming_normal(2, 3).numpy())
[[ 0.7984  0.3819  0.4512]
 [-0.2685 -0.6985  0.2247]]
Source code in tinygrad/tensor.py
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
@staticmethod
def kaiming_normal(*shape, a:float = 0.01, **kwargs) -> Tensor:
  """
  <https://pytorch.org/docs/stable/_modules/torch/nn/init.html#kaiming_normal_>

  You can pass in `dtype` and `device` keyword arguments to control the data type and device of the tensor.
  Additionally, all other keyword arguments are passed to the constructor of the tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  print(Tensor.kaiming_normal(2, 3).numpy())
  ```
  """
  std = math.sqrt(2.0 / (1 + a ** 2)) / math.sqrt(prod(argfix(*shape)[1:]))
  return Tensor.normal(*shape, mean=0.0, std=std, **kwargs)