Creation
Creation (basic)¤
empty
staticmethod
¤
empty(*shape, **kwargs)
Creates an empty tensor with the given shape.
You can pass in dtype
and device
keyword arguments to control the data type and device of the tensor.
Additionally, all other keyword arguments are passed to the constructor of the tensor.
t = Tensor.empty(2, 3)
print(t.shape)
(2, 3)
Source code in tinygrad/tensor.py
446 447 448 449 450 451 452 453 454 455 456 457 458 459 |
|
zeros
staticmethod
¤
zeros(*shape, **kwargs) -> Tensor
Creates a tensor with the given shape, filled with zeros.
You can pass in dtype
and device
keyword arguments to control the data type and device of the tensor.
Additionally, all other keyword arguments are passed to the constructor of the tensor.
print(Tensor.zeros(2, 3).numpy())
[[0. 0. 0.]
[0. 0. 0.]]
print(Tensor.zeros(2, 3, dtype=dtypes.int32).numpy())
[[0 0 0]
[0 0 0]]
Source code in tinygrad/tensor.py
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 |
|
ones
staticmethod
¤
ones(*shape, **kwargs) -> Tensor
Creates a tensor with the given shape, filled with ones.
You can pass in dtype
and device
keyword arguments to control the data type and device of the tensor.
Additionally, all other keyword arguments are passed to the constructor of the tensor.
print(Tensor.ones(2, 3).numpy())
[[1. 1. 1.]
[1. 1. 1.]]
print(Tensor.ones(2, 3, dtype=dtypes.int32).numpy())
[[1 1 1]
[1 1 1]]
Source code in tinygrad/tensor.py
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 |
|
full
staticmethod
¤
Creates a tensor with the given shape, filled with the given value.
You can pass in dtype
and device
keyword arguments to control the data type and device of the tensor.
Additionally, all other keyword arguments are passed to the constructor of the tensor.
print(Tensor.full((2, 3), 42).numpy())
[[42 42 42]
[42 42 42]]
print(Tensor.full((2, 3), False).numpy())
[[False False False]
[False False False]]
Source code in tinygrad/tensor.py
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 |
|
arange
staticmethod
¤
arange(start, stop=None, step=1, **kwargs) -> Tensor
Returns a 1-D tensor of size ceil((stop - start) / step)
with values from [start, stop)
, with spacing between values given by step
.
If stop
is not specified, values are generated from [0, start)
with the given step
.
If stop
is specified, values are generated from [start, stop)
with the given step
.
You can pass in dtype
and device
keyword arguments to control the data type and device of the tensor.
Additionally, all other keyword arguments are passed to the constructor of the tensor.
print(Tensor.arange(5).numpy())
[0 1 2 3 4]
print(Tensor.arange(5, 10).numpy())
[5 6 7 8 9]
print(Tensor.arange(5, 10, 2).numpy())
[5 7 9]
print(Tensor.arange(5.5, 10, 2).numpy())
[5.5 7.5 9.5]
Source code in tinygrad/tensor.py
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 |
|
linspace
staticmethod
¤
Returns a 1-D tensor of steps
evenly spaced values from start
to stop
, inclusive.
You can pass in dtype
and device
keyword arguments to control the data type and device of the tensor.
Additionally, all other keyword arguments are passed to the constructor of the tensor.
print(Tensor.linspace(0, 10, 5).numpy())
[ 0. 2.5 5. 7.5 10. ]
print(Tensor.linspace(-1, 1, 5).numpy())
[-1. -0.5 0. 0.5 1. ]
Source code in tinygrad/tensor.py
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 |
|
eye
staticmethod
¤
Returns a 2-D tensor with n
rows and m
columns, with ones on the diagonal and zeros elsewhere.
You can pass in dtype
and device
keyword arguments to control the data type and device of the tensor.
Additionally, all other keyword arguments are passed to the constructor of the tensor.
print(Tensor.eye(3).numpy())
[[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.]]
print(Tensor.eye(2, 4).numpy())
[[1. 0. 0. 0.]
[0. 1. 0. 0.]]
Source code in tinygrad/tensor.py
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 |
|
full_like
¤
Creates a tensor with the same shape as self
, filled with the given value.
If dtype
is not specified, the dtype of self
is used.
You can pass in the device
keyword argument to control device of the tensor.
Additionally, all other keyword arguments are passed to the constructor of the tensor.
t = Tensor.ones(2, 3)
print(Tensor.full_like(t, 42).numpy())
[[42. 42. 42.]
[42. 42. 42.]]
Source code in tinygrad/tensor.py
697 698 699 700 701 702 703 704 705 706 707 708 709 710 |
|
zeros_like
¤
zeros_like(**kwargs) -> Tensor
Creates a tensor with the same shape as self
, filled with zeros.
You can pass in dtype
and device
keyword arguments to control the data type and device of the tensor.
Additionally, all other keyword arguments are passed to the constructor of the tensor.
t = Tensor.ones(2, 3)
print(Tensor.zeros_like(t).numpy())
[[0. 0. 0.]
[0. 0. 0.]]
Source code in tinygrad/tensor.py
712 713 714 715 716 717 718 719 720 721 722 723 724 |
|
ones_like
¤
ones_like(**kwargs) -> Tensor
Creates a tensor with the same shape as self
, filled with ones.
You can pass in dtype
and device
keyword arguments to control the data type and device of the tensor.
Additionally, all other keyword arguments are passed to the constructor of the tensor.
t = Tensor.zeros(2, 3)
print(Tensor.ones_like(t).numpy())
[[1. 1. 1.]
[1. 1. 1.]]
Source code in tinygrad/tensor.py
726 727 728 729 730 731 732 733 734 735 736 737 738 |
|
Creation (external)¤
from_blob
staticmethod
¤
Exposes the pointer as a Tensor without taking ownership of the original data. The pointer must remain valid for the entire lifetime of the created Tensor.
You can pass in dtype
and device
keyword arguments to control the data type and device of the tensor.
Additionally, all other keyword arguments are passed to the constructor of the tensor.
Source code in tinygrad/tensor.py
461 462 463 464 465 466 467 468 469 470 471 472 473 474 |
|
from_url
staticmethod
¤
Create a Tensor from a URL.
This is the preferred way to access Internet resources. It currently returns a DISK Tensor, but in the future it may return an HTTP Tensor. This also will soon become lazy (when possible) and not print progress without DEBUG.
THe gunzip
flag will gzip extract the resource and return an extracted Tensor.
Source code in tinygrad/tensor.py
476 477 478 479 480 481 482 483 484 485 486 487 |
|
Creation (random)¤
manual_seed
staticmethod
¤
manual_seed(seed=0)
Sets the seed for random operations.
Tensor.manual_seed(42)
print(Tensor.rand(5).numpy())
print(Tensor.rand(5).numpy())
[0.997 0.5899 0.2225 0.7551 0.9057]
[0.6162 0.6213 0.9791 0.7851 0.4178]
Tensor.manual_seed(42) # reset to the same seed
print(Tensor.rand(5).numpy())
print(Tensor.rand(5).numpy())
[0.997 0.5899 0.2225 0.7551 0.9057]
[0.6162 0.6213 0.9791 0.7851 0.4178]
Source code in tinygrad/tensor.py
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 |
|
rand
staticmethod
¤
rand(
*shape,
device: Optional[str] = None,
dtype: Optional[DTypeLike] = None,
contiguous: bool = True,
**kwargs
) -> Tensor
Creates a tensor with the given shape, filled with random values from a uniform distribution over the interval [0, 1)
.
You can pass in dtype
and device
keyword arguments to control the data type and device of the tensor.
Additionally, all other keyword arguments are passed to the constructor of the tensor.
Tensor.manual_seed(42)
t = Tensor.rand(2, 3)
print(t.numpy())
[[0.997 0.5899 0.2225]
[0.7551 0.9057 0.8649]]
Source code in tinygrad/tensor.py
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 |
|
randn
staticmethod
¤
randn(
*shape,
dtype: Optional[DTypeLike] = None,
requires_grad: Optional[bool] = None,
**kwargs
) -> Tensor
Creates a tensor with the given shape, filled with random values from a normal distribution with mean 0
and standard deviation 1
.
If dtype
is not specified, the default type is used.
You can pass in the device
keyword argument to control device of the tensor.
Additionally, all other keyword arguments are passed to the constructor of the tensor.
Tensor.manual_seed(42)
print(Tensor.randn(2, 3).numpy())
[[ 0.9779 0.4678 0.5526]
[-0.3288 -0.8555 0.2753]]
Source code in tinygrad/tensor.py
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 |
|
randint
staticmethod
¤
Creates a tensor with the given shape, filled with random integer values generated uniformly from the interval [low, high)
.
If dtype
is not specified, the default type is used.
You can pass in the device
keyword argument to control device of the tensor.
Additionally, all other keyword arguments are passed to the constructor of the tensor.
Tensor.manual_seed(42)
print(Tensor.randint(2, 3, low=5, high=10).numpy())
[[9 7 6]
[8 9 9]]
Source code in tinygrad/tensor.py
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 |
|
normal
staticmethod
¤
Creates a tensor with the given shape, filled with random values from a normal distribution with the given mean
and standard deviation std
.
You can pass in dtype
and device
keyword arguments to control the data type and device of the tensor.
Additionally, all other keyword arguments are passed to the constructor of the tensor.
Tensor.manual_seed(42)
print(Tensor.normal(2, 3, mean=10, std=2).numpy())
[[11.9557 10.9356 11.1053]
[ 9.3423 8.289 10.5505]]
Source code in tinygrad/tensor.py
800 801 802 803 804 805 806 807 808 809 810 811 812 813 |
|
uniform
staticmethod
¤
uniform(
*shape,
low=0.0,
high=1.0,
dtype: Optional[DTypeLike] = None,
requires_grad: Optional[bool] = None,
**kwargs
) -> Tensor
Creates a tensor with the given shape, filled with random values from a uniform distribution over the interval [low, high)
.
You can pass in dtype
and device
keyword arguments to control the data type and device of the tensor.
Additionally, all other keyword arguments are passed to the constructor of the tensor.
Tensor.manual_seed(42)
print(Tensor.uniform(2, 3, low=2, high=10).numpy())
[[9.9763 6.7193 3.7804]
[8.0404 9.2452 8.9191]]
Source code in tinygrad/tensor.py
815 816 817 818 819 820 821 822 823 824 825 826 827 828 |
|
scaled_uniform
staticmethod
¤
scaled_uniform(*shape, **kwargs) -> Tensor
Creates a tensor with the given shape, filled with random values from a uniform distribution
over the interval [-prod(shape)**-0.5, prod(shape)**-0.5)
.
You can pass in dtype
and device
keyword arguments to control the data type and device of the tensor.
Additionally, all other keyword arguments are passed to the constructor of the tensor.
Tensor.manual_seed(42)
print(Tensor.scaled_uniform(2, 3).numpy())
[[ 0.4058 0.0734 -0.2265]
[ 0.2082 0.3312 0.2979]]
Source code in tinygrad/tensor.py
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 |
|
glorot_uniform
staticmethod
¤
glorot_uniform(*shape, **kwargs) -> Tensor
https://www.tensorflow.org/api_docs/python/tf/keras/initializers/GlorotUniform
You can pass in dtype
and device
keyword arguments to control the data type and device of the tensor.
Additionally, all other keyword arguments are passed to the constructor of the tensor.
Tensor.manual_seed(42)
print(Tensor.glorot_uniform(2, 3).numpy())
[[ 1.0889 0.197 -0.6079]
[ 0.5588 0.8887 0.7994]]
Source code in tinygrad/tensor.py
847 848 849 850 851 852 853 854 855 856 857 858 859 860 |
|
kaiming_uniform
staticmethod
¤
https://pytorch.org/docs/stable/_modules/torch/nn/init.html#kaiming_uniform_
You can pass in dtype
and device
keyword arguments to control the data type and device of the tensor.
Additionally, all other keyword arguments are passed to the constructor of the tensor.
Tensor.manual_seed(42)
print(Tensor.kaiming_uniform(2, 3).numpy())
[[ 1.4058 0.2543 -0.7847]
[ 0.7214 1.1473 1.032 ]]
Source code in tinygrad/tensor.py
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 |
|
kaiming_normal
staticmethod
¤
https://pytorch.org/docs/stable/_modules/torch/nn/init.html#kaiming_normal_
You can pass in dtype
and device
keyword arguments to control the data type and device of the tensor.
Additionally, all other keyword arguments are passed to the constructor of the tensor.
Tensor.manual_seed(42)
print(Tensor.kaiming_normal(2, 3).numpy())
[[ 0.7984 0.3819 0.4512]
[-0.2685 -0.6985 0.2247]]
Source code in tinygrad/tensor.py
880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 |
|