Creation
Creation (basic)¤
empty
staticmethod
¤
empty(*shape, **kwargs)
Creates an empty tensor with the given shape.
You can pass in dtype
and device
keyword arguments to control the data type and device of the tensor.
Additionally, all other keyword arguments are passed to the constructor of the tensor.
t = Tensor.empty(2, 3)
print(t.shape)
(2, 3)
Source code in tinygrad/tensor.py
408 409 410 411 412 413 414 415 416 417 418 419 420 421 |
|
zeros
staticmethod
¤
zeros(*shape, **kwargs) -> Tensor
Creates a tensor with the given shape, filled with zeros.
You can pass in dtype
and device
keyword arguments to control the data type and device of the tensor.
Additionally, all other keyword arguments are passed to the constructor of the tensor.
print(Tensor.zeros(2, 3).numpy())
[[0. 0. 0.]
[0. 0. 0.]]
print(Tensor.zeros(2, 3, dtype=dtypes.int32).numpy())
[[0 0 0]
[0 0 0]]
Source code in tinygrad/tensor.py
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 |
|
ones
staticmethod
¤
ones(*shape, **kwargs) -> Tensor
Creates a tensor with the given shape, filled with ones.
You can pass in dtype
and device
keyword arguments to control the data type and device of the tensor.
Additionally, all other keyword arguments are passed to the constructor of the tensor.
print(Tensor.ones(2, 3).numpy())
[[1. 1. 1.]
[1. 1. 1.]]
print(Tensor.ones(2, 3, dtype=dtypes.int32).numpy())
[[1 1 1]
[1 1 1]]
Source code in tinygrad/tensor.py
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 |
|
full
staticmethod
¤
Creates a tensor with the given shape, filled with the given value.
You can pass in dtype
and device
keyword arguments to control the data type and device of the tensor.
Additionally, all other keyword arguments are passed to the constructor of the tensor.
print(Tensor.full((2, 3), 42).numpy())
[[42 42 42]
[42 42 42]]
print(Tensor.full((2, 3), False).numpy())
[[False False False]
[False False False]]
Source code in tinygrad/tensor.py
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 |
|
arange
staticmethod
¤
arange(start, stop=None, step=1, **kwargs) -> Tensor
Returns a 1-D tensor of size ceil((stop - start) / step)
with values from [start, stop)
, with spacing between values given by step
.
If stop
is not specified, values are generated from [0, start)
with the given step
.
If stop
is specified, values are generated from [start, stop)
with the given step
.
You can pass in dtype
and device
keyword arguments to control the data type and device of the tensor.
Additionally, all other keyword arguments are passed to the constructor of the tensor.
print(Tensor.arange(5).numpy())
[0 1 2 3 4]
print(Tensor.arange(5, 10).numpy())
[5 6 7 8 9]
print(Tensor.arange(5, 10, 2).numpy())
[5 7 9]
print(Tensor.arange(5.5, 10, 2).numpy())
[5.5 7.5 9.5]
Source code in tinygrad/tensor.py
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 |
|
linspace
staticmethod
¤
Returns a 1-D tensor of steps
evenly spaced values from start
to stop
, inclusive.
You can pass in dtype
and device
keyword arguments to control the data type and device of the tensor.
Additionally, all other keyword arguments are passed to the constructor of the tensor.
print(Tensor.linspace(0, 10, 5).numpy())
[ 0. 2.5 5. 7.5 10. ]
print(Tensor.linspace(-1, 1, 5).numpy())
[-1. -0.5 0. 0.5 1. ]
Source code in tinygrad/tensor.py
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 |
|
eye
staticmethod
¤
Returns a 2-D tensor with n
rows and m
columns, with ones on the diagonal and zeros elsewhere.
You can pass in dtype
and device
keyword arguments to control the data type and device of the tensor.
Additionally, all other keyword arguments are passed to the constructor of the tensor.
print(Tensor.eye(3).numpy())
[[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.]]
print(Tensor.eye(2, 4).numpy())
[[1. 0. 0. 0.]
[0. 1. 0. 0.]]
Source code in tinygrad/tensor.py
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 |
|
full_like
¤
Creates a tensor with the same shape as self
, filled with the given value.
If dtype
is not specified, the dtype of self
is used.
You can pass in the device
keyword argument to control device of the tensor.
Additionally, all other keyword arguments are passed to the constructor of the tensor.
t = Tensor.ones(2, 3)
print(Tensor.full_like(t, 42).numpy())
[[42. 42. 42.]
[42. 42. 42.]]
Source code in tinygrad/tensor.py
659 660 661 662 663 664 665 666 667 668 669 670 671 672 |
|
zeros_like
¤
zeros_like(**kwargs) -> Tensor
Creates a tensor with the same shape as self
, filled with zeros.
You can pass in dtype
and device
keyword arguments to control the data type and device of the tensor.
Additionally, all other keyword arguments are passed to the constructor of the tensor.
t = Tensor.ones(2, 3)
print(Tensor.zeros_like(t).numpy())
[[0. 0. 0.]
[0. 0. 0.]]
Source code in tinygrad/tensor.py
674 675 676 677 678 679 680 681 682 683 684 685 686 |
|
ones_like
¤
ones_like(**kwargs) -> Tensor
Creates a tensor with the same shape as self
, filled with ones.
You can pass in dtype
and device
keyword arguments to control the data type and device of the tensor.
Additionally, all other keyword arguments are passed to the constructor of the tensor.
t = Tensor.zeros(2, 3)
print(Tensor.ones_like(t).numpy())
[[1. 1. 1.]
[1. 1. 1.]]
Source code in tinygrad/tensor.py
688 689 690 691 692 693 694 695 696 697 698 699 700 |
|
Creation (external)¤
from_blob
staticmethod
¤
Exposes the pointer as a Tensor without taking ownership of the original data. The pointer must remain valid for the entire lifetime of the created Tensor.
You can pass in dtype
and device
keyword arguments to control the data type and device of the tensor.
Additionally, all other keyword arguments are passed to the constructor of the tensor.
Source code in tinygrad/tensor.py
423 424 425 426 427 428 429 430 431 432 433 434 435 436 |
|
from_url
staticmethod
¤
Create a Tensor from a URL.
This is the preferred way to access Internet resources. It currently returns a DISK Tensor, but in the future it may return an HTTP Tensor. This also will soon become lazy (when possible) and not print progress without DEBUG.
THe gunzip
flag will gzip extract the resource and return an extracted Tensor.
Source code in tinygrad/tensor.py
438 439 440 441 442 443 444 445 446 447 448 449 |
|
Creation (random)¤
manual_seed
staticmethod
¤
manual_seed(seed=0)
Sets the seed for random operations.
Tensor.manual_seed(42)
print(Tensor.rand(5).numpy())
print(Tensor.rand(5).numpy())
[0.997 0.5899 0.2225 0.7551 0.9057]
[0.6162 0.6213 0.9791 0.7851 0.4178]
Tensor.manual_seed(42) # reset to the same seed
print(Tensor.rand(5).numpy())
print(Tensor.rand(5).numpy())
[0.997 0.5899 0.2225 0.7551 0.9057]
[0.6162 0.6213 0.9791 0.7851 0.4178]
Source code in tinygrad/tensor.py
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 |
|
rand
staticmethod
¤
rand(
*shape,
device: Optional[str] = None,
dtype: Optional[DTypeLike] = None,
contiguous: bool = True,
**kwargs
) -> Tensor
Creates a tensor with the given shape, filled with random values from a uniform distribution over the interval [0, 1)
.
You can pass in dtype
and device
keyword arguments to control the data type and device of the tensor.
Additionally, all other keyword arguments are passed to the constructor of the tensor.
Tensor.manual_seed(42)
t = Tensor.rand(2, 3)
print(t.numpy())
[[0.997 0.5899 0.2225]
[0.7551 0.9057 0.8649]]
Source code in tinygrad/tensor.py
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 |
|
randn
staticmethod
¤
randn(
*shape,
dtype: Optional[DTypeLike] = None,
requires_grad: Optional[bool] = None,
**kwargs
) -> Tensor
Creates a tensor with the given shape, filled with random values from a normal distribution with mean 0
and standard deviation 1
.
If dtype
is not specified, the default type is used.
You can pass in the device
keyword argument to control device of the tensor.
Additionally, all other keyword arguments are passed to the constructor of the tensor.
Tensor.manual_seed(42)
print(Tensor.randn(2, 3).numpy())
[[ 0.9779 0.4678 0.5526]
[-0.3288 -0.8555 0.2753]]
Source code in tinygrad/tensor.py
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 |
|
randint
staticmethod
¤
Creates a tensor with the given shape, filled with random integer values generated uniformly from the interval [low, high)
.
If dtype
is not specified, the default type is used.
You can pass in the device
keyword argument to control device of the tensor.
Additionally, all other keyword arguments are passed to the constructor of the tensor.
Tensor.manual_seed(42)
print(Tensor.randint(2, 3, low=5, high=10).numpy())
[[9 7 6]
[8 9 9]]
Source code in tinygrad/tensor.py
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 |
|
normal
staticmethod
¤
Creates a tensor with the given shape, filled with random values from a normal distribution with the given mean
and standard deviation std
.
You can pass in dtype
and device
keyword arguments to control the data type and device of the tensor.
Additionally, all other keyword arguments are passed to the constructor of the tensor.
Tensor.manual_seed(42)
print(Tensor.normal(2, 3, mean=10, std=2).numpy())
[[11.9557 10.9356 11.1053]
[ 9.3423 8.289 10.5505]]
Source code in tinygrad/tensor.py
762 763 764 765 766 767 768 769 770 771 772 773 774 775 |
|
uniform
staticmethod
¤
uniform(
*shape,
low=0.0,
high=1.0,
dtype: Optional[DTypeLike] = None,
requires_grad: Optional[bool] = None,
**kwargs
) -> Tensor
Creates a tensor with the given shape, filled with random values from a uniform distribution over the interval [low, high)
.
You can pass in dtype
and device
keyword arguments to control the data type and device of the tensor.
Additionally, all other keyword arguments are passed to the constructor of the tensor.
Tensor.manual_seed(42)
print(Tensor.uniform(2, 3, low=2, high=10).numpy())
[[9.9763 6.7193 3.7804]
[8.0404 9.2452 8.9191]]
Source code in tinygrad/tensor.py
777 778 779 780 781 782 783 784 785 786 787 788 789 790 |
|
scaled_uniform
staticmethod
¤
scaled_uniform(*shape, **kwargs) -> Tensor
Creates a tensor with the given shape, filled with random values from a uniform distribution
over the interval [-prod(shape)**-0.5, prod(shape)**-0.5)
.
You can pass in dtype
and device
keyword arguments to control the data type and device of the tensor.
Additionally, all other keyword arguments are passed to the constructor of the tensor.
Tensor.manual_seed(42)
print(Tensor.scaled_uniform(2, 3).numpy())
[[ 0.4058 0.0734 -0.2265]
[ 0.2082 0.3312 0.2979]]
Source code in tinygrad/tensor.py
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 |
|
glorot_uniform
staticmethod
¤
glorot_uniform(*shape, **kwargs) -> Tensor
https://www.tensorflow.org/api_docs/python/tf/keras/initializers/GlorotUniform
You can pass in dtype
and device
keyword arguments to control the data type and device of the tensor.
Additionally, all other keyword arguments are passed to the constructor of the tensor.
Tensor.manual_seed(42)
print(Tensor.glorot_uniform(2, 3).numpy())
[[ 1.0889 0.197 -0.6079]
[ 0.5588 0.8887 0.7994]]
Source code in tinygrad/tensor.py
809 810 811 812 813 814 815 816 817 818 819 820 821 822 |
|
kaiming_uniform
staticmethod
¤
https://pytorch.org/docs/stable/_modules/torch/nn/init.html#kaiming_uniform_
You can pass in dtype
and device
keyword arguments to control the data type and device of the tensor.
Additionally, all other keyword arguments are passed to the constructor of the tensor.
Tensor.manual_seed(42)
print(Tensor.kaiming_uniform(2, 3).numpy())
[[ 1.4058 0.2543 -0.7847]
[ 0.7214 1.1473 1.032 ]]
Source code in tinygrad/tensor.py
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 |
|
kaiming_normal
staticmethod
¤
https://pytorch.org/docs/stable/_modules/torch/nn/init.html#kaiming_normal_
You can pass in dtype
and device
keyword arguments to control the data type and device of the tensor.
Additionally, all other keyword arguments are passed to the constructor of the tensor.
Tensor.manual_seed(42)
print(Tensor.kaiming_normal(2, 3).numpy())
[[ 0.7984 0.3819 0.4512]
[-0.2685 -0.6985 0.2247]]
Source code in tinygrad/tensor.py
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 |
|