Elementwise
Elementwise ops operate on a per element basis. They don't change the shape of the tensor.
Unary Ops (math)¤
logical_not
¤
logical_not() -> Tensor
Computes the logical NOT of the tensor element-wise.
print(Tensor([False, True]).logical_not().numpy())
[ True False]
Source code in tinygrad/tensor.py
2722 2723 2724 2725 2726 2727 2728 2729 2730 | |
neg
¤
neg() -> Tensor
Negates the tensor element-wise.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).neg().numpy())
[ 3. 2. 1. -0. -1. -2. -3.]
Source code in tinygrad/tensor.py
2732 2733 2734 2735 2736 2737 2738 2739 2740 | |
log
¤
log() -> Tensor
Computes the natural logarithm element-wise.
See: https://en.wikipedia.org/wiki/Logarithm
print(Tensor([1., 2., 4., 8.]).log().numpy())
[0. 0.6931 1.3863 2.0794]
Source code in tinygrad/tensor.py
2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 | |
log2
¤
log2() -> Tensor
Computes the base-2 logarithm element-wise.
See: https://en.wikipedia.org/wiki/Logarithm
print(Tensor([1., 2., 4., 8.]).log2().numpy())
[0. 1. 2. 3.]
Source code in tinygrad/tensor.py
2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 | |
exp
¤
exp() -> Tensor
Computes the exponential function element-wise.
See: https://en.wikipedia.org/wiki/Exponential_function
print(Tensor([0., 1., 2., 3.]).exp().numpy())
[ 1. 2.7183 7.3891 20.0855]
Source code in tinygrad/tensor.py
2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 | |
exp2
¤
exp2() -> Tensor
Computes the base-2 exponential function element-wise.
See: https://en.wikipedia.org/wiki/Exponential_function
print(Tensor([0., 1., 2., 3.]).exp2().numpy())
[1. 2. 4. 8.]
Source code in tinygrad/tensor.py
2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 | |
sqrt
¤
sqrt() -> Tensor
Computes the square root of the tensor element-wise.
print(Tensor([1., 2., 3., 4.]).sqrt().numpy())
[1. 1.4142 1.7321 2. ]
Source code in tinygrad/tensor.py
2853 2854 2855 2856 2857 2858 2859 2860 2861 | |
rsqrt
¤
rsqrt() -> Tensor
Computes the reciprocal of the square root of the tensor element-wise.
print(Tensor([1., 2., 3., 4.]).rsqrt().numpy())
[1. 0.7071 0.5774 0.5 ]
Source code in tinygrad/tensor.py
2863 2864 2865 2866 2867 2868 2869 2870 2871 | |
sin
¤
sin() -> Tensor
Computes the sine of the tensor element-wise.
print(Tensor([0., math.pi/2, math.pi, 3*math.pi/2, 2*math.pi]).sin().numpy())
[ 0. 1. -0. -1. 0.]
Source code in tinygrad/tensor.py
2873 2874 2875 2876 2877 2878 2879 2880 2881 | |
cos
¤
cos() -> Tensor
Computes the cosine of the tensor element-wise.
print(Tensor([0., math.pi/2, math.pi, 3*math.pi/2, 2*math.pi]).cos().numpy())
[ 1.0000e+00 0.0000e+00 -1.0000e+00 -2.3842e-07 1.0000e+00]
Source code in tinygrad/tensor.py
2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 | |
tan
¤
tan() -> Tensor
Computes the tangent of the tensor element-wise.
print(Tensor([0., math.pi/4, math.pi/2, 3*math.pi/4, math.pi]).tan().numpy())
[ 0. 1. inf -1. 0.]
Source code in tinygrad/tensor.py
2894 2895 2896 2897 2898 2899 2900 2901 2902 | |
asin
¤
asin() -> Tensor
Computes the inverse sine (arcsine) of the tensor element-wise.
print(Tensor([-0.9, -0.6, -0.3, 0., 0.3, 0.6, 0.9]).asin().numpy())
[-1.1198 -0.6435 -0.3047 0. 0.3047 0.6435 1.1198]
Source code in tinygrad/tensor.py
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 | |
acos
¤
acos() -> Tensor
Computes the inverse cosine (arccosine) of the tensor element-wise.
print(Tensor([-0.9, -0.6, -0.3, 0., 0.3, 0.6, 0.9]).acos().numpy())
[2.6906 2.2143 1.8755 1.5708 1.2661 0.9273 0.451 ]
Source code in tinygrad/tensor.py
2917 2918 2919 2920 2921 2922 2923 2924 2925 | |
atan
¤
atan() -> Tensor
Computes the inverse tangent (arctan) of the tensor element-wise.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).atan().numpy())
[-1.249 -1.1071 -0.7854 0. 0.7854 1.1071 1.249 ]
Source code in tinygrad/tensor.py
2927 2928 2929 2930 2931 2932 2933 2934 2935 | |
trunc
¤
trunc() -> Tensor
Truncates the tensor element-wise.
print(Tensor([-3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5]).trunc().numpy())
[-3. -2. -1. -0. 0. 1. 2. 3.]
Source code in tinygrad/tensor.py
2939 2940 2941 2942 2943 2944 2945 2946 2947 | |
ceil
¤
ceil() -> Tensor
Rounds the tensor element-wise towards positive infinity.
print(Tensor([-3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5]).ceil().numpy())
[-3. -2. -1. -0. 1. 2. 3. 4.]
Source code in tinygrad/tensor.py
2949 2950 2951 2952 2953 2954 2955 2956 2957 | |
floor
¤
floor() -> Tensor
Rounds the tensor element-wise towards negative infinity.
print(Tensor([-3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5]).floor().numpy())
[-4. -3. -2. -1. 0. 1. 2. 3.]
Source code in tinygrad/tensor.py
2959 2960 2961 2962 2963 2964 2965 2966 2967 | |
round
¤
round() -> Tensor
Rounds the tensor element-wise with rounding half to even.
print(Tensor([-3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5]).round().numpy())
[-4. -2. -2. 0. 0. 2. 2. 4.]
Source code in tinygrad/tensor.py
2969 2970 2971 2972 2973 2974 2975 2976 2977 | |
isinf
¤
Checks the tensor element-wise to return True where the element is infinity, otherwise returns False
print(Tensor([1, float('inf'), 2, float('-inf'), float('nan')]).isinf().numpy())
[False True False True False]
Source code in tinygrad/tensor.py
2979 2980 2981 2982 2983 2984 2985 2986 2987 | |
isnan
¤
isnan() -> Tensor
Checks the tensor element-wise to return True where the element is NaN, otherwise returns False
print(Tensor([1, float('inf'), 2, float('-inf'), float('nan')]).isnan().numpy())
[False False False False True]
Source code in tinygrad/tensor.py
2989 2990 2991 2992 2993 2994 2995 2996 2997 | |
isfinite
¤
isfinite() -> Tensor
Checks the tensor element-wise to return True where the element is finite, otherwise returns False
print(Tensor([1, float('inf'), 2, float('-inf'), float('nan')]).isfinite().numpy())
[ True False True False False]
Source code in tinygrad/tensor.py
2999 3000 3001 3002 3003 3004 3005 3006 3007 | |
lerp
¤
Linearly interpolates between self and end by weight.
print(Tensor([1., 2., 3.]).lerp(Tensor([4., 5., 6.]), 0.5).numpy())
[2.5 3.5 4.5]
Source code in tinygrad/tensor.py
3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 | |
square
¤
square() -> Tensor
Squares the tensor element-wise.
Equivalent to self*self.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).square().numpy())
[9. 4. 1. 0. 1. 4. 9.]
Source code in tinygrad/tensor.py
3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 | |
clamp
¤
clamp(min_=None, max_=None) -> Tensor
Clips (clamps) the values in the tensor between min_ and max_ element-wise.
If min_ is None, there is no lower bound. If max_ is None, there is no upper bound.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).clip(-1, 1).numpy())
[-1. -1. -1. 0. 1. 1. 1.]
Source code in tinygrad/tensor.py
3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 | |
clip
¤
clip(min_=None, max_=None) -> Tensor
Alias for Tensor.clamp.
Source code in tinygrad/tensor.py
3046 3047 3048 3049 3050 | |
sign
¤
sign() -> Tensor
Returns the sign of the tensor element-wise.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).sign().numpy())
[-1. -1. -1. 0. 1. 1. 1.]
Source code in tinygrad/tensor.py
3052 3053 3054 3055 3056 3057 3058 3059 3060 | |
abs
¤
abs() -> Tensor
Computes the absolute value of the tensor element-wise.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).abs().numpy())
[3. 2. 1. 0. 1. 2. 3.]
Source code in tinygrad/tensor.py
3062 3063 3064 3065 3066 3067 3068 3069 3070 | |
reciprocal
¤
reciprocal() -> Tensor
Computes 1/x element-wise.
print(Tensor([1., 2., 3., 4.]).reciprocal().numpy())
[1. 0.5 0.3333 0.25 ]
Source code in tinygrad/tensor.py
3072 3073 3074 3075 3076 3077 3078 3079 3080 | |
Unary Ops (activation)¤
relu
¤
relu() -> Tensor
Applies the Rectified Linear Unit (ReLU) function element-wise.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).relu().numpy())
[0. 0. 0. 0. 1. 2. 3.]
Source code in tinygrad/tensor.py
2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 | |
sigmoid
¤
sigmoid() -> Tensor
Applies the Sigmoid function element-wise.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).sigmoid().numpy())
[0.0474 0.1192 0.2689 0.5 0.7311 0.8808 0.9526]
Source code in tinygrad/tensor.py
2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 | |
logsigmoid
¤
logsigmoid() -> Tensor
Applies the LogSigmoid function element-wise.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).logsigmoid().numpy())
[-3.0486 -2.1269 -1.3133 -0.6931 -0.3133 -0.1269 -0.0486]
Source code in tinygrad/tensor.py
2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 | |
hardsigmoid
¤
Applies the Hardsigmoid function element-wise.
NOTE: default alpha and beta values are taken from torch
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).hardsigmoid().numpy())
[0. 0.1667 0.3333 0.5 0.6667 0.8333 1. ]
Source code in tinygrad/tensor.py
2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 | |
elu
¤
elu(alpha=1.0) -> Tensor
Applies the Exponential Linear Unit (ELU) function element-wise.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).elu().numpy())
[-0.9502 -0.8647 -0.6321 0. 1. 2. 3. ]
Source code in tinygrad/tensor.py
3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 | |
celu
¤
celu(alpha=1.0) -> Tensor
Applies the Continuously differentiable Exponential Linear Unit (CELU) function element-wise.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).celu().numpy())
[-0.9502 -0.8647 -0.6321 0. 1. 2. 3. ]
Source code in tinygrad/tensor.py
3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 | |
selu
¤
selu(alpha=1.67326, gamma=1.0507) -> Tensor
Applies the Scaled Exponential Linear Unit (SELU) function element-wise.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).selu().numpy())
[-1.6706 -1.5202 -1.1113 0. 1.0507 2.1014 3.1521]
Source code in tinygrad/tensor.py
3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 | |
swish
¤
swish() -> Tensor
See .silu()
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).swish().numpy())
[-0.1423 -0.2384 -0.2689 0. 0.7311 1.7616 2.8577]
Source code in tinygrad/tensor.py
3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 | |
silu
¤
silu() -> Tensor
Applies the Sigmoid Linear Unit (SiLU) function element-wise.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).silu().numpy())
[-0.1423 -0.2384 -0.2689 0. 0.7311 1.7616 2.8577]
Source code in tinygrad/tensor.py
3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 | |
relu6
¤
relu6() -> Tensor
Applies the ReLU6 function element-wise.
print(Tensor([-9., -6., -3., 0., 3., 6., 9.]).relu6().numpy())
[0. 0. 0. 0. 3. 6. 6.]
Source code in tinygrad/tensor.py
3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 | |
hardswish
¤
hardswish() -> Tensor
Applies the Hardswish function element-wise.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).hardswish().numpy())
[-0. -0.3333 -0.3333 0. 0.6667 1.6667 3. ]
Source code in tinygrad/tensor.py
3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 | |
tanh
¤
tanh() -> Tensor
Applies the Hyperbolic Tangent (tanh) function element-wise.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).tanh().numpy())
[-0.9951 -0.964 -0.7616 0. 0.7616 0.964 0.9951]
Source code in tinygrad/tensor.py
3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 | |
sinh
¤
sinh() -> Tensor
Applies the Hyperbolic Sine (sinh) function element-wise.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).sinh().numpy())
[-10.0179 -3.6269 -1.1752 0. 1.1752 3.6269 10.0179]
Source code in tinygrad/tensor.py
3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 | |
cosh
¤
cosh() -> Tensor
Applies the Hyperbolic Cosine (cosh) function element-wise.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).cosh().numpy())
[10.0677 3.7622 1.5431 1. 1.5431 3.7622 10.0677]
Source code in tinygrad/tensor.py
3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 | |
atanh
¤
atanh() -> Tensor
Applies the Inverse Hyperbolic Tangent (atanh) function element-wise.
print(Tensor([-0.9, -0.6, -0.3, 0., 0.3, 0.6, 0.9]).atanh().numpy())
[-1.4722 -0.6931 -0.3095 0. 0.3095 0.6931 1.4722]
Source code in tinygrad/tensor.py
3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 | |
asinh
¤
asinh() -> Tensor
Applies the Inverse Hyperbolic Sine (asinh) function element-wise.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).asinh().numpy())
[-1.8184 -1.4436 -0.8814 0. 0.8814 1.4436 1.8184]
Source code in tinygrad/tensor.py
3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 | |
acosh
¤
acosh() -> Tensor
Applies the Inverse Hyperbolic Cosine (acosh) function element-wise.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).acosh().numpy())
[ nan nan nan nan 0. 1.317 1.7627]
Source code in tinygrad/tensor.py
3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 | |
hardtanh
¤
hardtanh(min_val=-1, max_val=1) -> Tensor
Applies the Hardtanh function element-wise.
print(Tensor([-1.5, -1.0, -0.5, 0., 0.5, 1.0, 1.5]).hardtanh().numpy())
[-1. -1. -0.5 0. 0.5 1. 1. ]
Source code in tinygrad/tensor.py
3240 3241 3242 3243 3244 3245 3246 3247 3248 | |
erf
¤
erf() -> Tensor
Applies error function element-wise.
- Described: https://en.wikipedia.org/wiki/Error_function
print(Tensor([-1.5, -1.0, -0.5, 0., 0.5, 1.0, 1.5]).erf().numpy())
[-0.9661 -0.8427 -0.5205 0. 0.5205 0.8427 0.9661]
Source code in tinygrad/tensor.py
3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 | |
gelu
¤
gelu() -> Tensor
Applies the Gaussian Error Linear Unit (GELU) function element-wise.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).gelu().numpy())
[-0.0036 -0.0454 -0.1588 0. 0.8412 1.9546 2.9964]
Source code in tinygrad/tensor.py
3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 | |
quick_gelu
¤
quick_gelu() -> Tensor
Applies the Sigmoid GELU approximation element-wise.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).quick_gelu().numpy())
[-0.0181 -0.0643 -0.1542 0. 0.8458 1.9357 2.9819]
Source code in tinygrad/tensor.py
3276 3277 3278 3279 3280 3281 3282 3283 3284 | |
leaky_relu
¤
leaky_relu(neg_slope=0.01) -> Tensor
Applies the Leaky ReLU function element-wise.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).leaky_relu().numpy())
[-0.03 -0.02 -0.01 0. 1. 2. 3. ]
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).leaky_relu(neg_slope=0.42).numpy())
[-1.26 -0.84 -0.42 0. 1. 2. 3. ]
Source code in tinygrad/tensor.py
3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 | |
mish
¤
mish() -> Tensor
Applies the Mish function element-wise.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).mish().numpy())
[-0.1456 -0.2525 -0.3034 0. 0.8651 1.944 2.9865]
Source code in tinygrad/tensor.py
3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 | |
softplus
¤
softplus(beta=1.0) -> Tensor
Applies the Softplus function element-wise.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).softplus().numpy())
[0.0486 0.1269 0.3133 0.6931 1.3133 2.1269 3.0486]
Source code in tinygrad/tensor.py
3311 3312 3313 3314 3315 3316 3317 3318 3319 | |
softsign
¤
softsign() -> Tensor
Applies the Softsign function element-wise.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).softsign().numpy())
[-0.75 -0.6667 -0.5 0. 0.5 0.6667 0.75 ]
Source code in tinygrad/tensor.py
3321 3322 3323 3324 3325 3326 3327 3328 3329 | |
Elementwise Ops (broadcasted)¤
add
¤
Adds self and x.
Equivalent to self + x.
Supports broadcasting to a common shape, type promotion, and integer, float, boolean inputs.
Tensor.manual_seed(42)
t = Tensor.randn(4)
print(t.numpy())
[-0.5144 1.085 0.9089 -0.0841]
print(t.add(20).numpy())
[19.4856 21.085 20.9089 19.9159]
print(t.add(Tensor([[2.0], [3.5]])).numpy())
[[1.4856 3.085 2.9089 1.9159]
[2.9856 4.585 4.4089 3.4159]]
Source code in tinygrad/mixin/math.py
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 | |
sub
¤
Subtracts x from self.
Equivalent to self - x.
Supports broadcasting to a common shape, type promotion, and integer, float, boolean inputs.
Tensor.manual_seed(42)
t = Tensor.randn(4)
print(t.numpy())
[-0.5144 1.085 0.9089 -0.0841]
print(t.sub(20).numpy())
[-20.5144 -18.915 -19.0911 -20.0841]
print(t.sub(Tensor([[2.0], [3.5]])).numpy())
[[-2.5144 -0.915 -1.0911 -2.0841]
[-4.0144 -2.415 -2.5911 -3.5841]]
Source code in tinygrad/tensor.py
3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 | |
mul
¤
Multiplies self and x.
Equivalent to self * x.
Supports broadcasting to a common shape, type promotion, and integer, float, boolean inputs.
Tensor.manual_seed(42)
t = Tensor.randn(4)
print(t.numpy())
[-0.5144 1.085 0.9089 -0.0841]
print(t.mul(3).numpy())
[-1.5431 3.2549 2.7267 -0.2523]
print(t.mul(Tensor([[-1.0], [2.0]])).numpy())
[[ 0.5144 -1.085 -0.9089 0.0841]
[-1.0287 2.17 1.8178 -0.1682]]
Source code in tinygrad/mixin/math.py
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 | |
div
¤
div(
x: Tensor | ConstType,
reverse=False,
rounding_mode: Literal["trunc", "floor"] | None = None,
) -> Tensor
Divides self by x.
Equivalent to self / x.
Supports broadcasting to a common shape, type promotion, and integer, float, boolean inputs.
div performs true division.
Tensor.manual_seed(42)
t = Tensor.randn(4)
print(t.numpy())
[-0.5144 1.085 0.9089 -0.0841]
print(t.div(3).numpy())
[-0.1715 0.3617 0.303 -0.028 ]
print(Tensor([1, 4, 10]).div(Tensor([2, 3, 4])).numpy())
[0.5 1.3333 2.5 ]
Source code in tinygrad/tensor.py
3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 | |
idiv
¤
Divides self by x.
Equivalent to self // x.
Supports broadcasting to a common shape, type promotion, and integer inputs.
idiv performs integer division (truncate towards zero).
print(Tensor([-4, 7, 5, 4, -7, 8]).idiv(Tensor([2, -3, 8, -2, 3, 5])).numpy())
[-2 -2 0 -2 -2 1]
Source code in tinygrad/mixin/math.py
121 122 123 124 125 126 127 128 129 130 131 132 | |
mod
¤
Mod self by x.
Equivalent to self % x.
Supports broadcasting to a common shape, type promotion, and integer inputs.
print(Tensor([-4, 7, 5, 4, -7, 8]).mod(Tensor([2, -3, 8, -2, 3, 5])).numpy())
[ 0 -2 5 0 2 3]
Source code in tinygrad/tensor.py
3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 | |
bitwise_xor
¤
Computes bitwise xor of self and x.
Equivalent to self ^ x.
Supports broadcasting to a common shape, type promotion, and integer, boolean inputs.
print(Tensor([-1, -2, 3]).bitwise_xor(Tensor([1, 0, 3])).numpy())
[-2 -2 0]
print(Tensor([True, True, False, False]).bitwise_xor(Tensor([True, False, True, False])).numpy())
[False True True False]
Source code in tinygrad/mixin/math.py
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 | |
bitwise_and
¤
Computes the bitwise AND of self and x.
Equivalent to self & x.
Supports broadcasting to a common shape, type promotion, and integer, boolean inputs.
print(Tensor([2, 5, 255]).bitwise_and(Tensor([3, 14, 16])).numpy())
[ 2 4 16]
print(Tensor([True, True, False, False]).bitwise_and(Tensor([True, False, True, False])).numpy())
[ True False False False]
Source code in tinygrad/mixin/math.py
75 76 77 78 79 80 81 82 83 84 85 86 87 88 | |
bitwise_or
¤
Computes the bitwise OR of self and x.
Equivalent to self | x.
Supports broadcasting to a common shape, type promotion, and integer, boolean inputs.
print(Tensor([2, 5, 255]).bitwise_or(Tensor([4, 4, 4])).numpy())
[ 6 5 255]
print(Tensor([True, True, False, False]).bitwise_or(Tensor([True, False, True, False])).numpy())
[ True True True False]
Source code in tinygrad/mixin/math.py
90 91 92 93 94 95 96 97 98 99 100 101 102 103 | |
bitwise_not
¤
bitwise_not() -> Tensor
Computes the bitwise NOT of self.
Equivalent to ~self.
print(Tensor([0, 2, 5, 255], dtype="int8").bitwise_not().numpy())
[-1 -3 -6 0]
print(Tensor([True, False]).bitwise_not().numpy())
[False True]
Source code in tinygrad/tensor.py
3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 | |
lshift
¤
Computes left arithmetic shift of self by x bits. self must have unsigned dtype.
Equivalent to self << x.
print(Tensor([1, 3, 31], dtype=dtypes.uint8).lshift(2).numpy())
[ 4 12 124]
Source code in tinygrad/tensor.py
3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 | |
rshift
¤
Computes right arithmetic shift of self by x bits. self must have unsigned dtype.
Equivalent to self >> x.
print(Tensor([4, 13, 125], dtype=dtypes.uint8).rshift(2).numpy())
[ 1 3 31]
Source code in tinygrad/tensor.py
3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 | |
pow
¤
Computes power of self with x.
Equivalent to self ** x.
print(Tensor([-1, 2, 3]).pow(2.0).numpy())
[1 4 9]
print(Tensor([-1, 2, 3]).pow(Tensor([-1.5, 0.5, 1.5])).numpy())
[-2147483648 1 5]
print((2.0 ** Tensor([-1, 2, 3])).numpy())
[0.5 4. 8. ]
Source code in tinygrad/tensor.py
3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 | |
maximum
¤
Computes element-wise maximum of self and x.
print(Tensor([-1, 2, 3]).maximum(1).numpy())
[1 2 3]
print(Tensor([-1, 2, 3]).maximum(Tensor([-4, -2, 9])).numpy())
[-1 2 9]
Source code in tinygrad/tensor.py
3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 | |
minimum
¤
Computes element-wise minimum of self and x.
print(Tensor([-1, 2, 3]).minimum(1).numpy())
[-1 1 1]
print(Tensor([-1, 2, 3]).minimum(Tensor([-4, -2, 9])).numpy())
[-4 -2 3]
Source code in tinygrad/tensor.py
3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 | |
where
¤
Returns a tensor of elements selected from either x or y, depending on self.
output_i = x_i if self_i else y_i.
cond = Tensor([[True, True, False], [True, False, False]])
print(cond.where(1, 3).numpy())
[[1 1 3]
[1 3 3]]
Tensor.manual_seed(42)
cond = Tensor.randn(2, 3)
print(cond.numpy())
[[ 0.9779 0.4678 0.5526]
[-0.3288 -0.8555 0.2753]]
print((cond > 0).where(cond, -float("inf")).numpy())
[[0.9779 0.4678 0.5526]
[ -inf -inf 0.2753]]
Source code in tinygrad/tensor.py
3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 | |
copysign
¤
copysign(other) -> Tensor
Returns a tensor of with the magnitude of self and the sign of other, elementwise.
Source code in tinygrad/tensor.py
3537 3538 3539 3540 3541 3542 3543 3544 | |
logaddexp
¤
logaddexp(other) -> Tensor
Calculates (self.exp()+other.exp()).log(), elementwise.
Source code in tinygrad/tensor.py
3546 3547 3548 3549 3550 3551 | |
Casting Ops¤
cast
¤
cast(dtype: DTypeLike) -> Tensor
Casts self to the given dtype.
t = Tensor([-1, 2.5, 3], dtype=dtypes.float)
print(t.dtype, t.numpy())
dtypes.float [-1. 2.5 3. ]
t = t.cast(dtypes.int32)
print(t.dtype, t.numpy())
dtypes.int [-1 2 3]
t = t.cast(dtypes.uint8)
print(t.dtype, t.numpy())
dtypes.uchar [255 2 3]
Source code in tinygrad/tensor.py
3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 | |
bitcast
¤
bitcast(dtype: DTypeLike) -> Tensor
Bitcasts self to the given dtype of the same itemsize.
self must not require a gradient.
t = Tensor([-1, 2, 3], dtype=dtypes.int32)
print(t.dtype, t.numpy())
dtypes.int [-1 2 3]
t = t.bitcast(dtypes.uint32)
print(t.dtype, t.numpy())
dtypes.uint [4294967295 2 3]
Source code in tinygrad/tensor.py
3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 | |
float
¤
float() -> Tensor
Convenience method to cast self to a float32 Tensor.
t = Tensor([-1, 2, 3], dtype=dtypes.int32)
print(t.dtype, t.numpy())
dtypes.int [-1 2 3]
t = t.float()
print(t.dtype, t.numpy())
dtypes.float [-1. 2. 3.]
Source code in tinygrad/tensor.py
4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 | |
half
¤
half() -> Tensor
Convenience method to cast self to a float16 Tensor.
t = Tensor([-1, 2, 3], dtype=dtypes.int32)
print(t.dtype, t.numpy())
dtypes.int [-1 2 3]
t = t.half()
print(t.dtype, t.numpy())
dtypes.half [-1. 2. 3.]
Source code in tinygrad/tensor.py
4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 | |
int
¤
int() -> Tensor
Convenience method to cast self to a int32 Tensor.
t = Tensor([-1.5, -0.5, 0.0, 0.5, 1.5])
print(t.dtype, t.numpy())
dtypes.float [-1.5 -0.5 0. 0.5 1.5]
t = t.int()
print(t.dtype, t.numpy())
dtypes.int [-1 0 0 0 1]
Source code in tinygrad/tensor.py
4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 | |
bool
¤
bool() -> Tensor
Convenience method to cast self to a bool Tensor.
t = Tensor([-1, 0, 1])
print(t.dtype, t.numpy())
dtypes.int [-1 0 1]
t = t.bool()
print(t.dtype, t.numpy())
dtypes.bool [ True False True]
Source code in tinygrad/tensor.py
4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 | |