Elementwise
Elementwise ops operate on a per element basis. They don't change the shape of the tensor.
Unary Ops (math)¤
logical_not
¤
logical_not() -> Tensor
Computes the logical NOT of the tensor element-wise.
print(Tensor([False, True]).logical_not().numpy())
[ True False]
Source code in tinygrad/tensor.py
2973 2974 2975 2976 2977 2978 2979 2980 2981 | |
neg
¤
neg() -> Tensor
Negates the tensor element-wise.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).neg().numpy())
[ 3. 2. 1. -0. -1. -2. -3.]
Source code in tinygrad/tensor.py
2983 2984 2985 2986 2987 2988 2989 2990 2991 | |
log
¤
log() -> Tensor
Computes the natural logarithm element-wise.
See: https://en.wikipedia.org/wiki/Logarithm
print(Tensor([1., 2., 4., 8.]).log().numpy())
[0. 0.6931 1.3863 2.0794]
Source code in tinygrad/tensor.py
3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 | |
log2
¤
log2() -> Tensor
Computes the base-2 logarithm element-wise.
See: https://en.wikipedia.org/wiki/Logarithm
print(Tensor([1., 2., 4., 8.]).log2().numpy())
[0. 1. 2. 3.]
Source code in tinygrad/tensor.py
3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 | |
exp
¤
exp() -> Tensor
Computes the exponential function element-wise.
See: https://en.wikipedia.org/wiki/Exponential_function
print(Tensor([0., 1., 2., 3.]).exp().numpy())
[ 1. 2.7183 7.3891 20.0855]
Source code in tinygrad/tensor.py
3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 | |
exp2
¤
exp2() -> Tensor
Computes the base-2 exponential function element-wise.
See: https://en.wikipedia.org/wiki/Exponential_function
print(Tensor([0., 1., 2., 3.]).exp2().numpy())
[1. 2. 4. 8.]
Source code in tinygrad/tensor.py
3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 | |
sqrt
¤
sqrt() -> Tensor
Computes the square root of the tensor element-wise.
print(Tensor([1., 2., 3., 4.]).sqrt().numpy())
[1. 1.4142 1.7321 2. ]
Source code in tinygrad/tensor.py
3104 3105 3106 3107 3108 3109 3110 3111 3112 | |
rsqrt
¤
rsqrt() -> Tensor
Computes the reciprocal of the square root of the tensor element-wise.
print(Tensor([1., 2., 3., 4.]).rsqrt().numpy())
[1. 0.7071 0.5774 0.5 ]
Source code in tinygrad/tensor.py
3114 3115 3116 3117 3118 3119 3120 3121 3122 | |
sin
¤
sin() -> Tensor
Computes the sine of the tensor element-wise.
print(Tensor([0., math.pi/2, math.pi, 3*math.pi/2, 2*math.pi]).sin().numpy())
[ 0. 1. -0. -1. 0.]
Source code in tinygrad/tensor.py
3124 3125 3126 3127 3128 3129 3130 3131 3132 | |
cos
¤
cos() -> Tensor
Computes the cosine of the tensor element-wise.
print(Tensor([0., math.pi/2, math.pi, 3*math.pi/2, 2*math.pi]).cos().numpy())
[ 1.0000e+00 0.0000e+00 -1.0000e+00 -2.3842e-07 1.0000e+00]
Source code in tinygrad/tensor.py
3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 | |
tan
¤
tan() -> Tensor
Computes the tangent of the tensor element-wise.
print(Tensor([0., math.pi/4, math.pi/2, 3*math.pi/4, math.pi]).tan().numpy())
[ 0. 1. inf -1. 0.]
Source code in tinygrad/tensor.py
3145 3146 3147 3148 3149 3150 3151 3152 3153 | |
asin
¤
asin() -> Tensor
Computes the inverse sine (arcsine) of the tensor element-wise.
print(Tensor([-0.9, -0.6, -0.3, 0., 0.3, 0.6, 0.9]).asin().numpy())
[-1.1198 -0.6435 -0.3047 0. 0.3047 0.6435 1.1198]
Source code in tinygrad/tensor.py
3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 | |
acos
¤
acos() -> Tensor
Computes the inverse cosine (arccosine) of the tensor element-wise.
print(Tensor([-0.9, -0.6, -0.3, 0., 0.3, 0.6, 0.9]).acos().numpy())
[2.6906 2.2143 1.8755 1.5708 1.2661 0.9273 0.451 ]
Source code in tinygrad/tensor.py
3168 3169 3170 3171 3172 3173 3174 3175 3176 | |
atan
¤
atan() -> Tensor
Computes the inverse tangent (arctan) of the tensor element-wise.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).atan().numpy())
[-1.249 -1.1071 -0.7854 0. 0.7854 1.1071 1.249 ]
Source code in tinygrad/tensor.py
3178 3179 3180 3181 3182 3183 3184 3185 3186 | |
trunc
¤
trunc() -> Tensor
Truncates the tensor element-wise.
print(Tensor([-3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5]).trunc().numpy())
[-3. -2. -1. -0. 0. 1. 2. 3.]
Source code in tinygrad/tensor.py
3190 3191 3192 3193 3194 3195 3196 3197 3198 | |
ceil
¤
ceil() -> Tensor
Rounds the tensor element-wise towards positive infinity.
print(Tensor([-3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5]).ceil().numpy())
[-3. -2. -1. -0. 1. 2. 3. 4.]
Source code in tinygrad/tensor.py
3200 3201 3202 3203 3204 3205 3206 3207 3208 | |
floor
¤
floor() -> Tensor
Rounds the tensor element-wise towards negative infinity.
print(Tensor([-3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5]).floor().numpy())
[-4. -3. -2. -1. 0. 1. 2. 3.]
Source code in tinygrad/tensor.py
3210 3211 3212 3213 3214 3215 3216 3217 3218 | |
round
¤
round() -> Tensor
Rounds the tensor element-wise with rounding half to even.
print(Tensor([-3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5]).round().numpy())
[-4. -2. -2. 0. 0. 2. 2. 4.]
Source code in tinygrad/tensor.py
3220 3221 3222 3223 3224 3225 3226 3227 3228 | |
isinf
¤
Checks the tensor element-wise to return True where the element is infinity, otherwise returns False
print(Tensor([1, float('inf'), 2, float('-inf'), float('nan')]).isinf().numpy())
[False True False True False]
Source code in tinygrad/tensor.py
3230 3231 3232 3233 3234 3235 3236 3237 3238 | |
isnan
¤
isnan() -> Tensor
Checks the tensor element-wise to return True where the element is NaN, otherwise returns False
print(Tensor([1, float('inf'), 2, float('-inf'), float('nan')]).isnan().numpy())
[False False False False True]
Source code in tinygrad/tensor.py
3240 3241 3242 3243 3244 3245 3246 3247 3248 | |
isfinite
¤
isfinite() -> Tensor
Checks the tensor element-wise to return True where the element is finite, otherwise returns False
print(Tensor([1, float('inf'), 2, float('-inf'), float('nan')]).isfinite().numpy())
[ True False True False False]
Source code in tinygrad/tensor.py
3250 3251 3252 3253 3254 3255 3256 3257 3258 | |
lerp
¤
Linearly interpolates between self and end by weight.
print(Tensor([1., 2., 3.]).lerp(Tensor([4., 5., 6.]), 0.5).numpy())
[2.5 3.5 4.5]
Source code in tinygrad/tensor.py
3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 | |
square
¤
square() -> Tensor
Squares the tensor element-wise.
Equivalent to self*self.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).square().numpy())
[9. 4. 1. 0. 1. 4. 9.]
Source code in tinygrad/tensor.py
3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 | |
clamp
¤
clamp(min_=None, max_=None) -> Tensor
Clips (clamps) the values in the tensor between min_ and max_ element-wise.
If min_ is None, there is no lower bound. If max_ is None, there is no upper bound.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).clip(-1, 1).numpy())
[-1. -1. -1. 0. 1. 1. 1.]
Source code in tinygrad/tensor.py
3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 | |
clip
¤
clip(min_=None, max_=None) -> Tensor
Alias for Tensor.clamp.
Source code in tinygrad/tensor.py
3297 3298 3299 3300 3301 | |
sign
¤
sign() -> Tensor
Returns the sign of the tensor element-wise.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).sign().numpy())
[-1. -1. -1. 0. 1. 1. 1.]
Source code in tinygrad/tensor.py
3303 3304 3305 3306 3307 3308 3309 3310 3311 | |
abs
¤
abs() -> Tensor
Computes the absolute value of the tensor element-wise.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).abs().numpy())
[3. 2. 1. 0. 1. 2. 3.]
Source code in tinygrad/tensor.py
3313 3314 3315 3316 3317 3318 3319 3320 3321 | |
reciprocal
¤
reciprocal() -> Tensor
Computes 1/x element-wise.
print(Tensor([1., 2., 3., 4.]).reciprocal().numpy())
[1. 0.5 0.3333 0.25 ]
Source code in tinygrad/tensor.py
3323 3324 3325 3326 3327 3328 3329 3330 3331 | |
Unary Ops (activation)¤
relu
¤
relu() -> Tensor
Applies the Rectified Linear Unit (ReLU) function element-wise.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).relu().numpy())
[0. 0. 0. 0. 1. 2. 3.]
Source code in tinygrad/tensor.py
3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 | |
sigmoid
¤
sigmoid() -> Tensor
Applies the Sigmoid function element-wise.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).sigmoid().numpy())
[0.0474 0.1192 0.2689 0.5 0.7311 0.8808 0.9526]
Source code in tinygrad/tensor.py
3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 | |
logsigmoid
¤
logsigmoid() -> Tensor
Applies the LogSigmoid function element-wise.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).logsigmoid().numpy())
[-3.0486 -2.1269 -1.3133 -0.6931 -0.3133 -0.1269 -0.0486]
Source code in tinygrad/tensor.py
3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 | |
hardsigmoid
¤
Applies the Hardsigmoid function element-wise.
NOTE: default alpha and beta values are taken from torch
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).hardsigmoid().numpy())
[0. 0.1667 0.3333 0.5 0.6667 0.8333 1. ]
Source code in tinygrad/tensor.py
3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 | |
elu
¤
elu(alpha=1.0) -> Tensor
Applies the Exponential Linear Unit (ELU) function element-wise.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).elu().numpy())
[-0.9502 -0.8647 -0.6321 0. 1. 2. 3. ]
Source code in tinygrad/tensor.py
3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 | |
celu
¤
celu(alpha=1.0) -> Tensor
Applies the Continuously differentiable Exponential Linear Unit (CELU) function element-wise.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).celu().numpy())
[-0.9502 -0.8647 -0.6321 0. 1. 2. 3. ]
Source code in tinygrad/tensor.py
3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 | |
selu
¤
selu(alpha=1.67326, gamma=1.0507) -> Tensor
Applies the Scaled Exponential Linear Unit (SELU) function element-wise.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).selu().numpy())
[-1.6706 -1.5202 -1.1113 0. 1.0507 2.1014 3.1521]
Source code in tinygrad/tensor.py
3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 | |
swish
¤
swish() -> Tensor
See .silu()
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).swish().numpy())
[-0.1423 -0.2384 -0.2689 0. 0.7311 1.7616 2.8577]
Source code in tinygrad/tensor.py
3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 | |
silu
¤
silu() -> Tensor
Applies the Sigmoid Linear Unit (SiLU) function element-wise.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).silu().numpy())
[-0.1423 -0.2384 -0.2689 0. 0.7311 1.7616 2.8577]
Source code in tinygrad/tensor.py
3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 | |
relu6
¤
relu6() -> Tensor
Applies the ReLU6 function element-wise.
print(Tensor([-9., -6., -3., 0., 3., 6., 9.]).relu6().numpy())
[0. 0. 0. 0. 3. 6. 6.]
Source code in tinygrad/tensor.py
3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 | |
hardswish
¤
hardswish() -> Tensor
Applies the Hardswish function element-wise.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).hardswish().numpy())
[-0. -0.3333 -0.3333 0. 0.6667 1.6667 3. ]
Source code in tinygrad/tensor.py
3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 | |
tanh
¤
tanh() -> Tensor
Applies the Hyperbolic Tangent (tanh) function element-wise.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).tanh().numpy())
[-0.9951 -0.964 -0.7616 0. 0.7616 0.964 0.9951]
Source code in tinygrad/tensor.py
3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 | |
sinh
¤
sinh() -> Tensor
Applies the Hyperbolic Sine (sinh) function element-wise.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).sinh().numpy())
[-10.0179 -3.6269 -1.1752 0. 1.1752 3.6269 10.0179]
Source code in tinygrad/tensor.py
3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 | |
cosh
¤
cosh() -> Tensor
Applies the Hyperbolic Cosine (cosh) function element-wise.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).cosh().numpy())
[10.0677 3.7622 1.5431 1. 1.5431 3.7622 10.0677]
Source code in tinygrad/tensor.py
3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 | |
atanh
¤
atanh() -> Tensor
Applies the Inverse Hyperbolic Tangent (atanh) function element-wise.
print(Tensor([-0.9, -0.6, -0.3, 0., 0.3, 0.6, 0.9]).atanh().numpy())
[-1.4722 -0.6931 -0.3095 0. 0.3095 0.6931 1.4722]
Source code in tinygrad/tensor.py
3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 | |
asinh
¤
asinh() -> Tensor
Applies the Inverse Hyperbolic Sine (asinh) function element-wise.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).asinh().numpy())
[-1.8184 -1.4436 -0.8814 0. 0.8814 1.4436 1.8184]
Source code in tinygrad/tensor.py
3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 | |
acosh
¤
acosh() -> Tensor
Applies the Inverse Hyperbolic Cosine (acosh) function element-wise.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).acosh().numpy())
[ nan nan nan nan 0. 1.317 1.7627]
Source code in tinygrad/tensor.py
3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 | |
hardtanh
¤
hardtanh(min_val=-1, max_val=1) -> Tensor
Applies the Hardtanh function element-wise.
print(Tensor([-1.5, -1.0, -0.5, 0., 0.5, 1.0, 1.5]).hardtanh().numpy())
[-1. -1. -0.5 0. 0.5 1. 1. ]
Source code in tinygrad/tensor.py
3491 3492 3493 3494 3495 3496 3497 3498 3499 | |
erf
¤
erf() -> Tensor
Applies error function element-wise.
- Described: https://en.wikipedia.org/wiki/Error_function
print(Tensor([-1.5, -1.0, -0.5, 0., 0.5, 1.0, 1.5]).erf().numpy())
[-0.9661 -0.8427 -0.5205 0. 0.5205 0.8427 0.9661]
Source code in tinygrad/tensor.py
3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 | |
gelu
¤
gelu() -> Tensor
Applies the Gaussian Error Linear Unit (GELU) function element-wise.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).gelu().numpy())
[-0.0036 -0.0454 -0.1588 0. 0.8412 1.9546 2.9964]
Source code in tinygrad/tensor.py
3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 | |
quick_gelu
¤
quick_gelu() -> Tensor
Applies the Sigmoid GELU approximation element-wise.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).quick_gelu().numpy())
[-0.0181 -0.0643 -0.1542 0. 0.8458 1.9357 2.9819]
Source code in tinygrad/tensor.py
3527 3528 3529 3530 3531 3532 3533 3534 3535 | |
leaky_relu
¤
leaky_relu(neg_slope=0.01) -> Tensor
Applies the Leaky ReLU function element-wise.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).leaky_relu().numpy())
[-0.03 -0.02 -0.01 0. 1. 2. 3. ]
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).leaky_relu(neg_slope=0.42).numpy())
[-1.26 -0.84 -0.42 0. 1. 2. 3. ]
Source code in tinygrad/tensor.py
3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 | |
mish
¤
mish() -> Tensor
Applies the Mish function element-wise.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).mish().numpy())
[-0.1456 -0.2525 -0.3034 0. 0.8651 1.944 2.9865]
Source code in tinygrad/tensor.py
3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 | |
softplus
¤
softplus(beta=1.0) -> Tensor
Applies the Softplus function element-wise.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).softplus().numpy())
[0.0486 0.1269 0.3133 0.6931 1.3133 2.1269 3.0486]
Source code in tinygrad/tensor.py
3562 3563 3564 3565 3566 3567 3568 3569 3570 | |
softsign
¤
softsign() -> Tensor
Applies the Softsign function element-wise.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).softsign().numpy())
[-0.75 -0.6667 -0.5 0. 0.5 0.6667 0.75 ]
Source code in tinygrad/tensor.py
3572 3573 3574 3575 3576 3577 3578 3579 3580 | |
Elementwise Ops (broadcasted)¤
add
¤
Adds self and x.
Equivalent to self + x.
Supports broadcasting to a common shape, type promotion, and integer, float, boolean inputs.
Tensor.manual_seed(42)
t = Tensor.randn(4)
print(t.numpy())
[-0.5144 1.085 0.9089 -0.0841]
print(t.add(20).numpy())
[19.4856 21.085 20.9089 19.9159]
print(t.add(Tensor([[2.0], [3.5]])).numpy())
[[1.4856 3.085 2.9089 1.9159]
[2.9856 4.585 4.4089 3.4159]]
Source code in tinygrad/uop/mixins.py
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 | |
sub
¤
Subtracts x from self.
Equivalent to self - x.
Supports broadcasting to a common shape, type promotion, and integer, float, boolean inputs.
Tensor.manual_seed(42)
t = Tensor.randn(4)
print(t.numpy())
[-0.5144 1.085 0.9089 -0.0841]
print(t.sub(20).numpy())
[-20.5144 -18.915 -19.0911 -20.0841]
print(t.sub(Tensor([[2.0], [3.5]])).numpy())
[[-2.5144 -0.915 -1.0911 -2.0841]
[-4.0144 -2.415 -2.5911 -3.5841]]
Source code in tinygrad/tensor.py
3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 | |
mul
¤
Multiplies self and x.
Equivalent to self * x.
Supports broadcasting to a common shape, type promotion, and integer, float, boolean inputs.
Tensor.manual_seed(42)
t = Tensor.randn(4)
print(t.numpy())
[-0.5144 1.085 0.9089 -0.0841]
print(t.mul(3).numpy())
[-1.5431 3.2549 2.7267 -0.2523]
print(t.mul(Tensor([[-1.0], [2.0]])).numpy())
[[ 0.5144 -1.085 -0.9089 0.0841]
[-1.0287 2.17 1.8178 -0.1682]]
Source code in tinygrad/uop/mixins.py
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 | |
div
¤
div(
x: Tensor | ConstType,
reverse=False,
rounding_mode: Literal["trunc", "floor"] | None = None,
) -> Tensor
Divides self by x.
Equivalent to self / x.
Supports broadcasting to a common shape, type promotion, and integer, float, boolean inputs.
div performs true division.
Tensor.manual_seed(42)
t = Tensor.randn(4)
print(t.numpy())
[-0.5144 1.085 0.9089 -0.0841]
print(t.div(3).numpy())
[-0.1715 0.3617 0.303 -0.028 ]
print(Tensor([1, 4, 10]).div(Tensor([2, 3, 4])).numpy())
[0.5 1.3333 2.5 ]
Source code in tinygrad/tensor.py
3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 | |
idiv
¤
Divides self by x.
Equivalent to self // x.
Supports broadcasting to a common shape, type promotion, and integer inputs.
idiv performs integer division (truncate towards zero).
print(Tensor([-4, 7, 5, 4, -7, 8]).idiv(Tensor([2, -3, 8, -2, 3, 5])).numpy())
[-2 -2 0 -2 -2 1]
Source code in tinygrad/uop/mixins.py
107 108 109 110 111 112 113 114 115 116 117 118 | |
mod
¤
Mod self by x.
Equivalent to self % x.
Supports broadcasting to a common shape, type promotion, and integer inputs.
print(Tensor([-4, 7, 5, 4, -7, 8]).mod(Tensor([2, -3, 8, -2, 3, 5])).numpy())
[ 0 -2 5 0 2 3]
Source code in tinygrad/tensor.py
3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 | |
bitwise_xor
¤
Computes bitwise xor of self and x.
Equivalent to self ^ x.
Supports broadcasting to a common shape, type promotion, and integer, boolean inputs.
print(Tensor([-1, -2, 3]).bitwise_xor(Tensor([1, 0, 3])).numpy())
[-2 -2 0]
print(Tensor([True, True, False, False]).bitwise_xor(Tensor([True, False, True, False])).numpy())
[False True True False]
Source code in tinygrad/uop/mixins.py
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 | |
bitwise_and
¤
Computes the bitwise AND of self and x.
Equivalent to self & x.
Supports broadcasting to a common shape, type promotion, and integer, boolean inputs.
print(Tensor([2, 5, 255]).bitwise_and(Tensor([3, 14, 16])).numpy())
[ 2 4 16]
print(Tensor([True, True, False, False]).bitwise_and(Tensor([True, False, True, False])).numpy())
[ True False False False]
Source code in tinygrad/uop/mixins.py
64 65 66 67 68 69 70 71 72 73 74 75 76 77 | |
bitwise_or
¤
Computes the bitwise OR of self and x.
Equivalent to self | x.
Supports broadcasting to a common shape, type promotion, and integer, boolean inputs.
print(Tensor([2, 5, 255]).bitwise_or(Tensor([4, 4, 4])).numpy())
[ 6 5 255]
print(Tensor([True, True, False, False]).bitwise_or(Tensor([True, False, True, False])).numpy())
[ True True True False]
Source code in tinygrad/uop/mixins.py
78 79 80 81 82 83 84 85 86 87 88 89 90 91 | |
bitwise_not
¤
bitwise_not() -> Tensor
Computes the bitwise NOT of self.
Equivalent to ~self.
print(Tensor([0, 2, 5, 255], dtype="int8").bitwise_not().numpy())
[-1 -3 -6 0]
print(Tensor([True, False]).bitwise_not().numpy())
[False True]
Source code in tinygrad/tensor.py
3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 | |
lshift
¤
Computes left arithmetic shift of self by x bits. self must have unsigned dtype.
Equivalent to self << x.
print(Tensor([1, 3, 31], dtype=dtypes.uint8).lshift(2).numpy())
[ 4 12 124]
Source code in tinygrad/tensor.py
3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 | |
rshift
¤
Computes right arithmetic shift of self by x bits. self must have unsigned dtype.
Equivalent to self >> x.
print(Tensor([4, 13, 125], dtype=dtypes.uint8).rshift(2).numpy())
[ 1 3 31]
Source code in tinygrad/tensor.py
3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 | |
pow
¤
Computes power of self with x.
Equivalent to self ** x.
print(Tensor([-1, 2, 3]).pow(2.0).numpy())
[1 4 9]
print(Tensor([-1, 2, 3]).pow(Tensor([-1.5, 0.5, 1.5])).numpy())
[-2147483648 1 5]
print((2.0 ** Tensor([-1, 2, 3])).numpy())
[0.5 4. 8. ]
Source code in tinygrad/tensor.py
3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 | |
maximum
¤
Computes element-wise maximum of self and x.
print(Tensor([-1, 2, 3]).maximum(1).numpy())
[1 2 3]
print(Tensor([-1, 2, 3]).maximum(Tensor([-4, -2, 9])).numpy())
[-1 2 9]
Source code in tinygrad/tensor.py
3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 | |
minimum
¤
Computes element-wise minimum of self and x.
print(Tensor([-1, 2, 3]).minimum(1).numpy())
[-1 1 1]
print(Tensor([-1, 2, 3]).minimum(Tensor([-4, -2, 9])).numpy())
[-4 -2 3]
Source code in tinygrad/tensor.py
3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 | |
where
¤
Returns a tensor of elements selected from either x or y, depending on self.
output_i = x_i if self_i else y_i.
cond = Tensor([[True, True, False], [True, False, False]])
print(cond.where(1, 3).numpy())
[[1 1 3]
[1 3 3]]
Tensor.manual_seed(42)
cond = Tensor.randn(2, 3)
print(cond.numpy())
[[ 0.9779 0.4678 0.5526]
[-0.3288 -0.8555 0.2753]]
print((cond > 0).where(cond, -float("inf")).numpy())
[[0.9779 0.4678 0.5526]
[ -inf -inf 0.2753]]
Source code in tinygrad/tensor.py
3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 | |
copysign
¤
copysign(other) -> Tensor
Returns a tensor of with the magnitude of self and the sign of other, elementwise.
Source code in tinygrad/tensor.py
3793 3794 3795 3796 3797 3798 3799 3800 | |
logaddexp
¤
logaddexp(other) -> Tensor
Calculates (self.exp()+other.exp()).log(), elementwise.
Source code in tinygrad/tensor.py
3802 3803 3804 3805 3806 3807 | |
Casting Ops¤
cast
¤
cast(dtype: DTypeLike) -> Tensor
Casts self to the given dtype.
t = Tensor([-1, 2.5, 3], dtype=dtypes.float)
print(t.dtype, t.numpy())
dtypes.float [-1. 2.5 3. ]
t = t.cast(dtypes.int32)
print(t.dtype, t.numpy())
dtypes.int [-1 2 3]
t = t.cast(dtypes.uint8)
print(t.dtype, t.numpy())
dtypes.uchar [255 2 3]
Source code in tinygrad/tensor.py
4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 | |
bitcast
¤
bitcast(dtype: DTypeLike) -> Tensor
Bitcasts self to the given dtype of the same itemsize.
self must not require a gradient.
t = Tensor([-1, 2, 3], dtype=dtypes.int32)
print(t.dtype, t.numpy())
dtypes.int [-1 2 3]
t = t.bitcast(dtypes.uint32)
print(t.dtype, t.numpy())
dtypes.uint [4294967295 2 3]
Source code in tinygrad/tensor.py
4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 | |
float
¤
float() -> Tensor
Convenience method to cast self to a float32 Tensor.
t = Tensor([-1, 2, 3], dtype=dtypes.int32)
print(t.dtype, t.numpy())
dtypes.int [-1 2 3]
t = t.float()
print(t.dtype, t.numpy())
dtypes.float [-1. 2. 3.]
Source code in tinygrad/tensor.py
4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 | |
half
¤
half() -> Tensor
Convenience method to cast self to a float16 Tensor.
t = Tensor([-1, 2, 3], dtype=dtypes.int32)
print(t.dtype, t.numpy())
dtypes.int [-1 2 3]
t = t.half()
print(t.dtype, t.numpy())
dtypes.half [-1. 2. 3.]
Source code in tinygrad/tensor.py
4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 | |
int
¤
int() -> Tensor
Convenience method to cast self to a int32 Tensor.
t = Tensor([-1.5, -0.5, 0.0, 0.5, 1.5])
print(t.dtype, t.numpy())
dtypes.float [-1.5 -0.5 0. 0.5 1.5]
t = t.int()
print(t.dtype, t.numpy())
dtypes.int [-1 0 0 0 1]
Source code in tinygrad/tensor.py
4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 | |
bool
¤
bool() -> Tensor
Convenience method to cast self to a bool Tensor.
t = Tensor([-1, 0, 1])
print(t.dtype, t.numpy())
dtypes.int [-1 0 1]
t = t.bool()
print(t.dtype, t.numpy())
dtypes.bool [ True False True]
Source code in tinygrad/tensor.py
4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 | |