Skip to content

Elementwise

Elementwise ops operate on a per element basis. They don't change the shape of the tensor.

Unary Ops (math)¤

logical_not ¤

logical_not()

Computes the logical NOT of the tensor element-wise.

print(Tensor([False, True]).logical_not().numpy())
[ True False]
Source code in tinygrad/tensor.py
2523
2524
2525
2526
2527
2528
2529
2530
2531
def logical_not(self):
  """
  Computes the logical NOT of the tensor element-wise.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([False, True]).logical_not().numpy())
  ```
  """
  return F.Neq.apply(*self.cast(dtypes.bool)._broadcasted(True))

neg ¤

neg()

Negates the tensor element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).neg().numpy())
[ 3.  2.  1. -0. -1. -2. -3.]
Source code in tinygrad/tensor.py
2532
2533
2534
2535
2536
2537
2538
2539
2540
def neg(self):
  """
  Negates the tensor element-wise.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).neg().numpy())
  ```
  """
  return self*-1 if self.dtype != dtypes.bool else self.logical_not()

log ¤

log()

Computes the natural logarithm element-wise.

See: https://en.wikipedia.org/wiki/Logarithm

print(Tensor([1., 2., 4., 8.]).log().numpy())
[0.     0.6931 1.3863 2.0794]
Source code in tinygrad/tensor.py
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
def log(self):
  """
  Computes the natural logarithm element-wise.

  See: https://en.wikipedia.org/wiki/Logarithm

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([1., 2., 4., 8.]).log().numpy())
  ```
  """
  return F.Log.apply(self.cast(least_upper_float(self.dtype)))

log2 ¤

log2()

Computes the base-2 logarithm element-wise.

See: https://en.wikipedia.org/wiki/Logarithm

print(Tensor([1., 2., 4., 8.]).log2().numpy())
[0. 1. 2. 3.]
Source code in tinygrad/tensor.py
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
def log2(self):
  """
  Computes the base-2 logarithm element-wise.

  See: https://en.wikipedia.org/wiki/Logarithm

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([1., 2., 4., 8.]).log2().numpy())
  ```
  """
  return self.log()/math.log(2)

exp ¤

exp()

Computes the exponential function element-wise.

See: https://en.wikipedia.org/wiki/Exponential_function

print(Tensor([0., 1., 2., 3.]).exp().numpy())
[ 1.      2.7183  7.3891 20.0855]
Source code in tinygrad/tensor.py
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
def exp(self):
  """
  Computes the exponential function element-wise.

  See: https://en.wikipedia.org/wiki/Exponential_function

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([0., 1., 2., 3.]).exp().numpy())
  ```
  """
  return F.Exp.apply(self.cast(least_upper_float(self.dtype)))

exp2 ¤

exp2()

Computes the base-2 exponential function element-wise.

See: https://en.wikipedia.org/wiki/Exponential_function

print(Tensor([0., 1., 2., 3.]).exp2().numpy())
[1. 2. 4. 8.]
Source code in tinygrad/tensor.py
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
def exp2(self):
  """
  Computes the base-2 exponential function element-wise.

  See: https://en.wikipedia.org/wiki/Exponential_function

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([0., 1., 2., 3.]).exp2().numpy())
  ```
  """
  return F.Exp.apply(self*math.log(2))

sqrt ¤

sqrt()

Computes the square root of the tensor element-wise.

print(Tensor([1., 2., 3., 4.]).sqrt().numpy())
[1.     1.4142 1.7321 2.    ]
Source code in tinygrad/tensor.py
2634
2635
2636
2637
2638
2639
2640
2641
2642
def sqrt(self):
  """
  Computes the square root of the tensor element-wise.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([1., 2., 3., 4.]).sqrt().numpy())
  ```
  """
  return F.Sqrt.apply(self.cast(least_upper_float(self.dtype)))

rsqrt ¤

rsqrt()

Computes the reciprocal of the square root of the tensor element-wise.

print(Tensor([1., 2., 3., 4.]).rsqrt().numpy())
[1.     0.7071 0.5774 0.5   ]
Source code in tinygrad/tensor.py
2643
2644
2645
2646
2647
2648
2649
2650
2651
def rsqrt(self):
  """
  Computes the reciprocal of the square root of the tensor element-wise.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([1., 2., 3., 4.]).rsqrt().numpy())
  ```
  """
  return self.reciprocal().sqrt()

sin ¤

sin()

Computes the sine of the tensor element-wise.

print(Tensor([0., math.pi/2, math.pi, 3*math.pi/2, 2*math.pi]).sin().numpy())
[ 0.  1. -0. -1.  0.]
Source code in tinygrad/tensor.py
2652
2653
2654
2655
2656
2657
2658
2659
2660
def sin(self):
  """
  Computes the sine of the tensor element-wise.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([0., math.pi/2, math.pi, 3*math.pi/2, 2*math.pi]).sin().numpy())
  ```
  """
  return F.Sin.apply(self.cast(least_upper_float(self.dtype)))

cos ¤

cos()

Computes the cosine of the tensor element-wise.

print(Tensor([0., math.pi/2, math.pi, 3*math.pi/2, 2*math.pi]).cos().numpy())
[ 1.0000e+00  0.0000e+00 -1.0000e+00 -2.3842e-07  1.0000e+00]
Source code in tinygrad/tensor.py
2661
2662
2663
2664
2665
2666
2667
2668
2669
def cos(self):
  """
  Computes the cosine of the tensor element-wise.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([0., math.pi/2, math.pi, 3*math.pi/2, 2*math.pi]).cos().numpy())
  ```
  """
  return ((math.pi/2)-self).sin()

tan ¤

tan()

Computes the tangent of the tensor element-wise.

print(Tensor([0., math.pi/4, math.pi/2, 3*math.pi/4, math.pi]).tan().numpy())
[ 0.  1. inf -1.  0.]
Source code in tinygrad/tensor.py
2670
2671
2672
2673
2674
2675
2676
2677
2678
def tan(self):
  """
  Computes the tangent of the tensor element-wise.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([0., math.pi/4, math.pi/2, 3*math.pi/4, math.pi]).tan().numpy())
  ```
  """
  return self.sin() / self.cos()

asin ¤

asin()

Computes the inverse sine (arcsine) of the tensor element-wise.

print(Tensor([-0.9, -0.6, -0.3, 0., 0.3, 0.6, 0.9]).asin().numpy())
[-1.1198 -0.6435 -0.3047  0.      0.3047  0.6435  1.1198]
Source code in tinygrad/tensor.py
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
def asin(self):
  """
  Computes the inverse sine (arcsine) of the tensor element-wise.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-0.9, -0.6, -0.3, 0., 0.3, 0.6, 0.9]).asin().numpy())
  ```
  """
  # https://personal.math.ubc.ca/~cbm/aands/page_81.htm 4.4.46
  coefficients = [-0.0012624911, 0.0066700901, -0.0170881256, 0.0308918810, -0.0501743046, 0.0889789874, -0.2145988016, 1.5707963050]
  x = math.pi / 2 - (1.0 - self.abs()).sqrt() * polyN(self.abs(), coefficients)
  return self.sign() * x

acos ¤

acos()

Computes the inverse cosine (arccosine) of the tensor element-wise.

print(Tensor([-0.9, -0.6, -0.3, 0., 0.3, 0.6, 0.9]).acos().numpy())
[2.6906 2.2143 1.8755 1.5708 1.2661 0.9273 0.451 ]
Source code in tinygrad/tensor.py
2693
2694
2695
2696
2697
2698
2699
2700
2701
def acos(self):
  """
  Computes the inverse cosine (arccosine) of the tensor element-wise.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-0.9, -0.6, -0.3, 0., 0.3, 0.6, 0.9]).acos().numpy())
  ```
  """
  return math.pi / 2 - self.asin()

atan ¤

atan()

Computes the inverse tangent (arctan) of the tensor element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).atan().numpy())
[-1.249  -1.1071 -0.7854  0.      0.7854  1.1071  1.249 ]
Source code in tinygrad/tensor.py
2703
2704
2705
2706
2707
2708
2709
2710
2711
def atan(self):
  """
  Computes the inverse tangent (arctan) of the tensor element-wise.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).atan().numpy())
  ```
  """
  return (self / (1 + self * self).sqrt()).asin()

trunc ¤

trunc() -> Tensor

Truncates the tensor element-wise.

print(Tensor([-3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5]).trunc().numpy())
[-3. -2. -1.  0.  0.  1.  2.  3.]
Source code in tinygrad/tensor.py
2715
2716
2717
2718
2719
2720
2721
2722
2723
def trunc(self: Tensor) -> Tensor:
  """
  Truncates the tensor element-wise.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5]).trunc().numpy())
  ```
  """
  return self.cast(dtypes.int32).cast(self.dtype)

ceil ¤

ceil() -> Tensor

Rounds the tensor element-wise towards positive infinity.

print(Tensor([-3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5]).ceil().numpy())
[-3. -2. -1.  0.  1.  2.  3.  4.]
Source code in tinygrad/tensor.py
2724
2725
2726
2727
2728
2729
2730
2731
2732
def ceil(self: Tensor) -> Tensor:
  """
  Rounds the tensor element-wise towards positive infinity.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5]).ceil().numpy())
  ```
  """
  return (self > (b := self.trunc())).where(b+1, b)

floor ¤

floor() -> Tensor

Rounds the tensor element-wise towards negative infinity.

print(Tensor([-3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5]).floor().numpy())
[-4. -3. -2. -1.  0.  1.  2.  3.]
Source code in tinygrad/tensor.py
2733
2734
2735
2736
2737
2738
2739
2740
2741
def floor(self: Tensor) -> Tensor:
  """
  Rounds the tensor element-wise towards negative infinity.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5]).floor().numpy())
  ```
  """
  return (self < (b := self.trunc())).where(b-1, b)

round ¤

round() -> Tensor

Rounds the tensor element-wise with rounding half to even.

print(Tensor([-3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5]).round().numpy())
[-4. -2. -2.  0.  0.  2.  2.  4.]
Source code in tinygrad/tensor.py
2742
2743
2744
2745
2746
2747
2748
2749
2750
def round(self: Tensor) -> Tensor:
  """
  Rounds the tensor element-wise with rounding half to even.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5]).round().numpy())
  ```
  """
  return ((self > 0) == ((b := self.cast(dtypes.int32) / 2.0).cast(dtypes.int32) == b)).where((self - 0.5).ceil(), (self + 0.5).floor())

isinf ¤

isinf(
    detect_positive: bool = True,
    detect_negative: bool = True,
)

Checks the tensor element-wise to return True where the element is infinity, otherwise returns False

print(Tensor([1, float('inf'), 2, float('-inf'), float('nan')]).isinf().numpy())
[False  True False  True False]
Source code in tinygrad/tensor.py
2752
2753
2754
2755
2756
2757
2758
2759
2760
def isinf(self:Tensor, detect_positive:bool=True, detect_negative:bool=True):
  """
  Checks the tensor element-wise to return True where the element is infinity, otherwise returns False

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([1, float('inf'), 2, float('-inf'), float('nan')]).isinf().numpy())
  ```
  """
  return (self == float("inf")) * detect_positive + (self == float("-inf")) * detect_negative

isnan ¤

isnan()

Checks the tensor element-wise to return True where the element is NaN, otherwise returns False

print(Tensor([1, float('inf'), 2, float('-inf'), float('nan')]).isnan().numpy())
[False False False False  True]
Source code in tinygrad/tensor.py
2761
2762
2763
2764
2765
2766
2767
2768
2769
def isnan(self:Tensor):
  """
  Checks the tensor element-wise to return True where the element is NaN, otherwise returns False

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([1, float('inf'), 2, float('-inf'), float('nan')]).isnan().numpy())
  ```
  """
  return self != self

lerp ¤

lerp(end: Tensor, weight: Union[Tensor, float]) -> Tensor

Linearly interpolates between self and end by weight.

print(Tensor([1., 2., 3.]).lerp(Tensor([4., 5., 6.]), 0.5).numpy())
[2.5 3.5 4.5]
Source code in tinygrad/tensor.py
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
def lerp(self, end: Tensor, weight: Union[Tensor, float]) -> Tensor:
  """
  Linearly interpolates between `self` and `end` by `weight`.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([1., 2., 3.]).lerp(Tensor([4., 5., 6.]), 0.5).numpy())
  ```
  """
  if self.dtype == dtypes.uint8 and isinstance(weight, Tensor):
    w_i = (weight * (1<<(W_PREC:=7)) + 0.5).cast(dtypes.int16)
    return (self+(((end - self).cast(dtypes.int8) * w_i + (1<<W_PREC-1)).cast(dtypes.uint16) >> W_PREC)).cast(dtypes.uint8)
  return self + (end - self) * weight

square ¤

square()

Squares the tensor element-wise. Equivalent to self*self.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).square().numpy())
[9. 4. 1. 0. 1. 4. 9.]
Source code in tinygrad/tensor.py
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
def square(self):
  """
  Squares the tensor element-wise.
  Equivalent to `self*self`.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).square().numpy())
  ```
  """
  return self*self

clamp ¤

clamp(min_=None, max_=None)

Clips (clamps) the values in the tensor between min_ and max_ element-wise. If min_ is None, there is no lower bound. If max_ is None, there is no upper bound.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).clip(-1, 1).numpy())
[-1. -1. -1.  0.  1.  1.  1.]
Source code in tinygrad/tensor.py
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
def clamp(self, min_=None, max_=None):
  """
  Clips (clamps) the values in the tensor between `min_` and `max_` element-wise.
  If `min_` is `None`, there is no lower bound. If `max_` is None, there is no upper bound.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).clip(-1, 1).numpy())
  ```
  """
  if min_ is None and max_ is None: raise RuntimeError("at least one of 'min_' or 'max_' must not be None")
  ret = self.maximum(min_) if min_ is not None else self
  return ret.minimum(max_) if max_ is not None else ret

clip ¤

clip(min_=None, max_=None)

Alias for Tensor.clamp.

Source code in tinygrad/tensor.py
2806
2807
2808
2809
2810
def clip(self, min_=None, max_=None):
  """
  Alias for `Tensor.clamp`.
  """
  return self.clamp(min_, max_)

sign ¤

sign()

Returns the sign of the tensor element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).sign().numpy())
[-1. -1. -1.  0.  1.  1.  1.]
Source code in tinygrad/tensor.py
2811
2812
2813
2814
2815
2816
2817
2818
2819
def sign(self):
  """
  Returns the sign of the tensor element-wise.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).sign().numpy())
  ```
  """
  return F.Sign.apply(self)

abs ¤

abs()

Computes the absolute value of the tensor element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).abs().numpy())
[3. 2. 1. 0. 1. 2. 3.]
Source code in tinygrad/tensor.py
2820
2821
2822
2823
2824
2825
2826
2827
2828
def abs(self):
  """
  Computes the absolute value of the tensor element-wise.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).abs().numpy())
  ```
  """
  return self * self.sign()

reciprocal ¤

reciprocal()

Compute 1/x element-wise.

print(Tensor([1., 2., 3., 4.]).reciprocal().numpy())
[1.     0.5    0.3333 0.25  ]
Source code in tinygrad/tensor.py
2829
2830
2831
2832
2833
2834
2835
2836
2837
def reciprocal(self):
  """
  Compute `1/x` element-wise.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([1., 2., 3., 4.]).reciprocal().numpy())
  ```
  """
  return F.Reciprocal.apply(self.cast(least_upper_float(self.dtype)))

Unary Ops (activation)¤

relu ¤

relu()

Applies the Rectified Linear Unit (ReLU) function element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).relu().numpy())
[0. 0. 0. 0. 1. 2. 3.]
Source code in tinygrad/tensor.py
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
def relu(self):
  """
  Applies the Rectified Linear Unit (ReLU) function element-wise.

  - Described: https://paperswithcode.com/method/relu

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).relu().numpy())
  ```
  """
  return F.Relu.apply(self)

sigmoid ¤

sigmoid()

Applies the Sigmoid function element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).sigmoid().numpy())
[0.0474 0.1192 0.2689 0.5    0.7311 0.8808 0.9526]
Source code in tinygrad/tensor.py
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
def sigmoid(self):
  """
  Applies the Sigmoid function element-wise.

  - Described: https://en.wikipedia.org/wiki/Sigmoid_function

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).sigmoid().numpy())
  ```
  """
  return (1 + (self * (-1/math.log(2))).exp2()).reciprocal()

hardsigmoid ¤

hardsigmoid(alpha: float = 1 / 6, beta: float = 0.5)

Applies the Hardsigmoid function element-wise. NOTE: default alpha and beta values is taken from torch

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).hardsigmoid().numpy())
[0.     0.1667 0.3333 0.5    0.6667 0.8333 1.    ]
Source code in tinygrad/tensor.py
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
def hardsigmoid(self, alpha:float=1/6, beta:float=0.5):
  """
  Applies the Hardsigmoid function element-wise.
  NOTE: default `alpha` and `beta` values is taken from torch

  - Described: https://paperswithcode.com/method/hard-sigmoid
  - See: https://pytorch.org/docs/stable/generated/torch.nn.functional.hardsigmoid.html

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).hardsigmoid().numpy())
  ```
  """
  return (alpha * self + beta).relu() - (alpha * self + beta - 1).relu()

elu ¤

elu(alpha=1.0)

Applies the Exponential Linear Unit (ELU) function element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).elu().numpy())
[-0.9502 -0.8647 -0.6321  0.      1.      2.      3.    ]
Source code in tinygrad/tensor.py
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
def elu(self, alpha=1.0):
  """
  Applies the Exponential Linear Unit (ELU) function element-wise.

  - Described: https://paperswithcode.com/method/elu
  - Paper: https://arxiv.org/abs/1511.07289v5

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).elu().numpy())
  ```
  """
  return self.relu() - alpha*(1-self.exp()).relu()

celu ¤

celu(alpha=1.0)

Applies the Continuously differentiable Exponential Linear Unit (CELU) function element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).celu().numpy())
[-0.9502 -0.8647 -0.6321  0.      1.      2.      3.    ]
Source code in tinygrad/tensor.py
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
def celu(self, alpha=1.0):
  """
  Applies the Continuously differentiable Exponential Linear Unit (CELU) function element-wise.

  - Described: https://paperswithcode.com/method/celu
  - Paper: https://arxiv.org/abs/1704.07483

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).celu().numpy())
  ```
  """
  return self.maximum(0) + (alpha * ((self / alpha).exp() - 1)).minimum(0)

selu ¤

selu(alpha=1.67326, gamma=1.0507)

Applies the Scaled Exponential Linear Unit (SELU) function element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).selu().numpy())
[-1.6706 -1.5202 -1.1113  0.      1.0507  2.1014  3.1521]
Source code in tinygrad/tensor.py
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
def selu(self, alpha=1.67326, gamma=1.0507):
  """
  Applies the Scaled Exponential Linear Unit (SELU) function element-wise.

  - Described: https://paperswithcode.com/method/selu
  - Paper: https://arxiv.org/abs/1706.02515v5

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).selu().numpy())
  ```
  """
  return gamma * (self >= 0).detach().where(self, alpha * (self.exp() - 1))

swish ¤

swish()

See .silu()

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).swish().numpy())
[-0.1423 -0.2384 -0.2689  0.      0.7311  1.7616  2.8577]
Source code in tinygrad/tensor.py
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
def swish(self):
  """
  See `.silu()`

  - Paper: https://arxiv.org/abs/1710.05941v1

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).swish().numpy())
  ```
  """
  return self * self.sigmoid()

silu ¤

silu()

Applies the Sigmoid Linear Unit (SiLU) function element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).silu().numpy())
[-0.1423 -0.2384 -0.2689  0.      0.7311  1.7616  2.8577]
Source code in tinygrad/tensor.py
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
def silu(self):
  """
  Applies the Sigmoid Linear Unit (SiLU) function element-wise.

  - Described: https://paperswithcode.com/method/silu
  - Paper: https://arxiv.org/abs/1606.08415

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).silu().numpy())
  ```
  """
  return self.swish()   # The SiLU function is also known as the swish function.

relu6 ¤

relu6()

Applies the ReLU6 function element-wise.

print(Tensor([-9., -6., -3., 0., 3., 6., 9.]).relu6().numpy())
[0. 0. 0. 0. 3. 6. 6.]
Source code in tinygrad/tensor.py
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
def relu6(self):
  """
  Applies the ReLU6 function element-wise.

  - Described: https://paperswithcode.com/method/relu6
  - Paper: https://arxiv.org/abs/1704.04861v1

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-9., -6., -3., 0., 3., 6., 9.]).relu6().numpy())
  ```
  """
  return self.relu() - (self-6).relu()

hardswish ¤

hardswish()

Applies the Hardswish function element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).hardswish().numpy())
[-0.     -0.3333 -0.3333  0.      0.6667  1.6667  3.    ]
Source code in tinygrad/tensor.py
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
def hardswish(self):
  """
  Applies the Hardswish function element-wise.

  - Described: https://paperswithcode.com/method/hard-swish
  - Paper: https://arxiv.org/abs/1905.02244v5

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).hardswish().numpy())
  ```
  """
  return self * (self+3).relu6() * (1/6)

tanh ¤

tanh()

Applies the Hyperbolic Tangent (tanh) function element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).tanh().numpy())
[-0.9951 -0.964  -0.7616  0.      0.7616  0.964   0.9951]
Source code in tinygrad/tensor.py
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
def tanh(self):
  """
  Applies the Hyperbolic Tangent (tanh) function element-wise.

  - Described: https://en.wikipedia.org/wiki/Hyperbolic_functions#Tanh

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).tanh().numpy())
  ```
  """
  return 2.0 * ((2.0 * self).sigmoid()) - 1.0

sinh ¤

sinh()

Applies the Hyperbolic Sine (sinh) function element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).sinh().numpy())
[-10.0179  -3.6269  -1.1752   0.       1.1752   3.6269  10.0179]
Source code in tinygrad/tensor.py
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
def sinh(self):
  """
  Applies the Hyperbolic Sine (sinh) function element-wise.

  - Described: https://en.wikipedia.org/wiki/Hyperbolic_functions#Sinh

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).sinh().numpy())
  ```
  """
  return (self.exp() - self.neg().exp()) / 2

cosh ¤

cosh()

Applies the Hyperbolic Cosine (cosh) function element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).cosh().numpy())
[10.0677  3.7622  1.5431  1.      1.5431  3.7622 10.0677]
Source code in tinygrad/tensor.py
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
def cosh(self):
  """
  Applies the Hyperbolic Cosine (cosh) function element-wise.

  - Described: https://en.wikipedia.org/wiki/Hyperbolic_functions#Cosh

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).cosh().numpy())
  ```
  """
  return (self.exp() + self.neg().exp()) / 2

atanh ¤

atanh()

Applies the Inverse Hyperbolic Tangent (atanh) function element-wise.

print(Tensor([-0.9, -0.6, -0.3, 0., 0.3, 0.6, 0.9]).atanh().numpy())
[-1.4722 -0.6931 -0.3095  0.      0.3095  0.6931  1.4722]
Source code in tinygrad/tensor.py
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
def atanh(self):
  """
  Applies the Inverse Hyperbolic Tangent (atanh) function element-wise.

  - Described: https://en.wikipedia.org/wiki/Inverse_hyperbolic_functions#atanh

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-0.9, -0.6, -0.3, 0., 0.3, 0.6, 0.9]).atanh().numpy())
  ```
  """
  return ((1 + self)/(1 - self)).log() / 2

asinh ¤

asinh()

Applies the Inverse Hyperbolic Sine (asinh) function element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).asinh().numpy())
[-1.8184 -1.4436 -0.8814  0.      0.8814  1.4436  1.8184]
Source code in tinygrad/tensor.py
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
def asinh(self):
  """
  Applies the Inverse Hyperbolic Sine (asinh) function element-wise.

  - Described: https://en.wikipedia.org/wiki/Inverse_hyperbolic_functions#asinh

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).asinh().numpy())
  ```
  """
  return (self + (self.square() + 1).sqrt()).log()

acosh ¤

acosh()

Applies the Inverse Hyperbolic Cosine (acosh) function element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).acosh().numpy())
[   nan    nan    nan    nan 0.     1.317  1.7627]
Source code in tinygrad/tensor.py
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
def acosh(self):
  """
  Applies the Inverse Hyperbolic Cosine (acosh) function element-wise.

  - Described: https://en.wikipedia.org/wiki/Inverse_hyperbolic_functions#acosh

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).acosh().numpy())
  ```
  """
  return (self + (self.square() - 1).sqrt()).log()

hardtanh ¤

hardtanh(min_val=-1, max_val=1)

Applies the Hardtanh function element-wise.

print(Tensor([-1.5, -1.0, -0.5, 0., 0.5, 1.0, 1.5]).hardtanh().numpy())
[-1.  -1.  -0.5  0.   0.5  1.   1. ]
Source code in tinygrad/tensor.py
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
def hardtanh(self, min_val=-1, max_val=1):
  """
  Applies the Hardtanh function element-wise.

  - Described: https://paperswithcode.com/method/hardtanh-activation

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-1.5, -1.0, -0.5, 0., 0.5, 1.0, 1.5]).hardtanh().numpy())
  ```
  """
  return self.clip(min_val, max_val)

erf ¤

erf()

Applies error function element-wise.

print(Tensor([-1.5, -1.0, -0.5, 0., 0.5, 1.0, 1.5]).erf().numpy())
[-0.9661 -0.8427 -0.5205  0.      0.5205  0.8427  0.9661]
Source code in tinygrad/tensor.py
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
def erf(self):
  """
  Applies error function element-wise.

  - Described: https://en.wikipedia.org/wiki/Error_function

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-1.5, -1.0, -0.5, 0., 0.5, 1.0, 1.5]).erf().numpy())
  ```
  """
  # https://personal.math.ubc.ca/~cbm/aands/page_299.htm 7.1.26
  t = 1.0 / (1.0 + 0.3275911 * self.abs())
  return self.sign() * (1.0 - t * polyN(t, [1.061405429, -1.453152027, 1.421413741, -0.284496736, 0.254829592]) * (-self.square()).exp())

gelu ¤

gelu()

Applies the Gaussian Error Linear Unit (GELU) function element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).gelu().numpy())
[-0.0036 -0.0454 -0.1588  0.      0.8412  1.9546  2.9964]
Source code in tinygrad/tensor.py
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
def gelu(self):
  """
  Applies the Gaussian Error Linear Unit (GELU) function element-wise.

  - Described: https://paperswithcode.com/method/gelu
  - Paper: https://arxiv.org/abs/1606.08415v5

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).gelu().numpy())
  ```
  """
  return 0.5 * self * (1 + (math.sqrt(2 / math.pi) * (self + 0.044715 * self ** 3)).tanh())

quick_gelu ¤

quick_gelu()

Applies the Sigmoid GELU approximation element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).quick_gelu().numpy())
[-0.0181 -0.0643 -0.1542  0.      0.8458  1.9357  2.9819]
Source code in tinygrad/tensor.py
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
def quick_gelu(self):
  """
  Applies the Sigmoid GELU approximation element-wise.

  - Described: https://paperswithcode.com/method/gelu

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).quick_gelu().numpy())
  ```
  """
  return self * (self * 1.702).sigmoid()

leakyrelu ¤

leakyrelu(neg_slope=0.01)

Applies the Leaky ReLU function element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).leakyrelu().numpy())
[-0.03 -0.02 -0.01  0.    1.    2.    3.  ]
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).leakyrelu(neg_slope=0.42).numpy())
[-1.26 -0.84 -0.42  0.    1.    2.    3.  ]

Source code in tinygrad/tensor.py
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
def leakyrelu(self, neg_slope=0.01):
  """
  Applies the Leaky ReLU function element-wise.

  - Described: https://paperswithcode.com/method/leaky-relu

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).leakyrelu().numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).leakyrelu(neg_slope=0.42).numpy())
  ```
  """
  return self.relu() - (-neg_slope*self).relu()

mish ¤

mish()

Applies the Mish function element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).mish().numpy())
[-0.1456 -0.2525 -0.3034  0.      0.8651  1.944   2.9865]
Source code in tinygrad/tensor.py
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
def mish(self):
  """
  Applies the Mish function element-wise.

  - Described: https://paperswithcode.com/method/mish
  - Paper: https://arxiv.org/abs/1908.08681v3

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).mish().numpy())
  ```
  """
  return self * self.softplus().tanh()

softplus ¤

softplus(beta=1)

Applies the Softplus function element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).softplus().numpy())
[0.0486 0.1269 0.3133 0.6931 1.3133 2.1269 3.0486]
Source code in tinygrad/tensor.py
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
def softplus(self, beta=1):
  """
  Applies the Softplus function element-wise.

  - Described: https://paperswithcode.com/method/softplus

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).softplus().numpy())
  ```
  """
  return (1/beta) * (1 + (self*beta).exp()).log()

softsign ¤

softsign()

Applies the Softsign function element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).softsign().numpy())
[-0.75   -0.6667 -0.5     0.      0.5     0.6667  0.75  ]
Source code in tinygrad/tensor.py
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
def softsign(self):
  """
  Applies the Softsign function element-wise.

  - Described: https://paperswithcode.com/method/softsign

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).softsign().numpy())
  ```
  """
  return self / (1 + self.abs())

Elementwise Ops (broadcasted)¤

add ¤

add(x: Union[Tensor, ConstType], reverse=False) -> Tensor

Adds self and x. Equivalent to self + x. Supports broadcasting to a common shape, type promotion, and integer, float, boolean inputs.

Tensor.manual_seed(42)
t = Tensor.randn(4)
print(t.numpy())
[-0.5144  1.085   0.9089 -0.0841]
print(t.add(20).numpy())
[19.4856 21.085  20.9089 19.9159]
print(t.add(Tensor([[2.0], [3.5]])).numpy())
[[1.4856 3.085  2.9089 1.9159]
 [2.9856 4.585  4.4089 3.4159]]

Source code in tinygrad/tensor.py
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
def add(self, x:Union[Tensor, ConstType], reverse=False) -> Tensor:
  """
  Adds `self` and `x`.
  Equivalent to `self + x`.
  Supports broadcasting to a common shape, type promotion, and integer, float, boolean inputs.

  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  t = Tensor.randn(4)
  print(t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.add(20).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.add(Tensor([[2.0], [3.5]])).numpy())
  ```
  """
  return F.Add.apply(*self._broadcasted(x, reverse))

sub ¤

sub(x: Union[Tensor, ConstType], reverse=False) -> Tensor

Subtracts x from self. Equivalent to self - x. Supports broadcasting to a common shape, type promotion, and integer, float, boolean inputs.

Tensor.manual_seed(42)
t = Tensor.randn(4)
print(t.numpy())
[-0.5144  1.085   0.9089 -0.0841]
print(t.sub(20).numpy())
[-20.5144 -18.915  -19.0911 -20.0841]
print(t.sub(Tensor([[2.0], [3.5]])).numpy())
[[-2.5144 -0.915  -1.0911 -2.0841]
 [-4.0144 -2.415  -2.5911 -3.5841]]

Source code in tinygrad/tensor.py
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
def sub(self, x:Union[Tensor, ConstType], reverse=False) -> Tensor:
  """
  Subtracts `x` from `self`.
  Equivalent to `self - x`.
  Supports broadcasting to a common shape, type promotion, and integer, float, boolean inputs.

  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  t = Tensor.randn(4)
  print(t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.sub(20).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.sub(Tensor([[2.0], [3.5]])).numpy())
  ```
  """
  a, b = self._broadcasted(x, reverse)
  return a + (-b)

mul ¤

mul(x: Union[Tensor, ConstType], reverse=False) -> Tensor

Multiplies self and x. Equivalent to self * x. Supports broadcasting to a common shape, type promotion, and integer, float, boolean inputs.

Tensor.manual_seed(42)
t = Tensor.randn(4)
print(t.numpy())
[-0.5144  1.085   0.9089 -0.0841]
print(t.mul(3).numpy())
[-1.5431  3.2549  2.7267 -0.2523]
print(t.mul(Tensor([[-1.0], [2.0]])).numpy())
[[ 0.5144 -1.085  -0.9089  0.0841]
 [-1.0287  2.17    1.8178 -0.1682]]

Source code in tinygrad/tensor.py
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
def mul(self, x:Union[Tensor, ConstType], reverse=False) -> Tensor:
  """
  Multiplies `self` and `x`.
  Equivalent to `self * x`.
  Supports broadcasting to a common shape, type promotion, and integer, float, boolean inputs.

  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  t = Tensor.randn(4)
  print(t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.mul(3).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.mul(Tensor([[-1.0], [2.0]])).numpy())
  ```
  """
  return F.Mul.apply(*self._broadcasted(x, reverse))

div ¤

div(x: Union[Tensor, ConstType], reverse=False) -> Tensor

Divides self by x. Equivalent to self / x. Supports broadcasting to a common shape, type promotion, and integer, float, boolean inputs. div performs true division.

Tensor.manual_seed(42)
t = Tensor.randn(4)
print(t.numpy())
[-0.5144  1.085   0.9089 -0.0841]
print(t.div(3).numpy())
[-0.1715  0.3617  0.303  -0.028 ]
print(Tensor([1, 4, 10]).div(Tensor([2, 3, 4])).numpy())
[0.5    1.3333 2.5   ]

Source code in tinygrad/tensor.py
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
def div(self, x:Union[Tensor, ConstType], reverse=False) -> Tensor:
  """
  Divides `self` by `x`.
  Equivalent to `self / x`.
  Supports broadcasting to a common shape, type promotion, and integer, float, boolean inputs.
  `div` performs true division.

  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  t = Tensor.randn(4)
  print(t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.div(3).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([1, 4, 10]).div(Tensor([2, 3, 4])).numpy())
  ```
  """
  numerator, denominator = self._broadcasted(x, reverse)
  return numerator.cast(least_upper_float(numerator.dtype)) * denominator.cast(least_upper_float(denominator.dtype)).reciprocal()

idiv ¤

idiv(x: Union[Tensor, ConstType], reverse=False) -> Tensor

Divides self by x. Equivalent to self // x. Supports broadcasting to a common shape, type promotion, and integer inputs. idiv performs integer division (truncate towards zero).

print(Tensor([-4, 7, 5, 4, -7, 8]).idiv(Tensor([2, -3, 8, -2, 3, 5])).numpy())
[-2 -2  0 -2 -2  1]
Source code in tinygrad/tensor.py
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
def idiv(self, x:Union[Tensor, ConstType], reverse=False) -> Tensor:
  """
  Divides `self` by `x`.
  Equivalent to `self // x`.
  Supports broadcasting to a common shape, type promotion, and integer inputs.
  `idiv` performs integer division (truncate towards zero).

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-4, 7, 5, 4, -7, 8]).idiv(Tensor([2, -3, 8, -2, 3, 5])).numpy())
  ```
  """
  return F.IDiv.apply(*self._broadcasted(x, reverse))

mod ¤

mod(x: Union[Tensor, ConstType], reverse=False) -> Tensor

Mod self by x. Equivalent to self % x. Supports broadcasting to a common shape, type promotion, and integer inputs.

print(Tensor([-4, 7, 5, 4, -7, 8]).mod(Tensor([2, -3, 8, -2, 3, 5])).numpy())
[ 0 -2  5  0  2  3]
Source code in tinygrad/tensor.py
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
def mod(self, x:Union[Tensor, ConstType], reverse=False) -> Tensor:
  """
  Mod `self` by `x`.
  Equivalent to `self % x`.
  Supports broadcasting to a common shape, type promotion, and integer inputs.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-4, 7, 5, 4, -7, 8]).mod(Tensor([2, -3, 8, -2, 3, 5])).numpy())
  ```
  """
  a, b = self._broadcasted(x, reverse)
  return (r := F.Mod.apply(a, b)) + b * (((r < 0) & (b > 0)) | ((r > 0) & (b < 0)))

xor ¤

xor(x: Union[Tensor, ConstType], reverse=False) -> Tensor

Computes bitwise xor of self and x. Equivalent to self ^ x. Supports broadcasting to a common shape, type promotion, and integer, boolean inputs.

print(Tensor([-1, -2, 3]).xor(Tensor([1, 0, 3])).numpy())
[-2 -2  0]
print(Tensor([True, True, False, False]).xor(Tensor([True, False, True, False])).numpy())
[False  True  True False]

Source code in tinygrad/tensor.py
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
def xor(self, x:Union[Tensor, ConstType], reverse=False) -> Tensor:
  """
  Computes bitwise xor of `self` and `x`.
  Equivalent to `self ^ x`.
  Supports broadcasting to a common shape, type promotion, and integer, boolean inputs.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-1, -2, 3]).xor(Tensor([1, 0, 3])).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([True, True, False, False]).xor(Tensor([True, False, True, False])).numpy())
  ```
  """
  if self.dtype != dtypes.bool and not dtypes.is_int(self.dtype): raise RuntimeError(f"{self.dtype} is not supported")
  return F.Xor.apply(*self._broadcasted(x, reverse))

lshift ¤

lshift(x: int)

Computes left arithmetic shift of self by x bits. self must have unsigned dtype. Equivalent to self << x.

print(Tensor([1, 3, 31], dtype=dtypes.uint8).lshift(2).numpy())
[  4  12 124]
Source code in tinygrad/tensor.py
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
def lshift(self, x:int):
  """
  Computes left arithmetic shift of `self` by `x` bits. `self` must have unsigned dtype.
  Equivalent to `self << x`.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([1, 3, 31], dtype=dtypes.uint8).lshift(2).numpy())
  ```
  """
  assert dtypes.is_unsigned(self.dtype) and isinstance(x, int) and x >= 0, f"not supported {self.dtype=} {x=}"
  return self.mul(2 ** x)

rshift ¤

rshift(x: int)

Computes right arithmetic shift of self by x bits. self must have unsigned dtype. Equivalent to self >> x.

print(Tensor([4, 13, 125], dtype=dtypes.uint8).rshift(2).numpy())
[ 1  3 31]
Source code in tinygrad/tensor.py
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
def rshift(self, x:int):
  """
  Computes right arithmetic shift of `self` by `x` bits. `self` must have unsigned dtype.
  Equivalent to `self >> x`.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([4, 13, 125], dtype=dtypes.uint8).rshift(2).numpy())
  ```
  """
  assert dtypes.is_unsigned(self.dtype) and isinstance(x, int) and x >= 0, f"not supported {self.dtype=} {x=}"
  return self.idiv(2 ** x)

pow ¤

pow(x: Union[Tensor, ConstType], reverse=False) -> Tensor

Computes power of self with x. Equivalent to self ** x.

print(Tensor([-1, 2, 3]).pow(2).numpy())
[1 4 9]
print(Tensor([-1, 2, 3]).pow(Tensor([-1.5, 0.5, 1.5])).numpy())
[-2147483648           1           5]
print((2 ** Tensor([-1, 2, 3])).numpy())
[0.5 4.  8. ]

Source code in tinygrad/tensor.py
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
def pow(self, x:Union[Tensor, ConstType], reverse=False) -> Tensor:
  """
  Computes power of `self` with `x`.
  Equivalent to `self ** x`.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-1, 2, 3]).pow(2).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-1, 2, 3]).pow(Tensor([-1.5, 0.5, 1.5])).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print((2 ** Tensor([-1, 2, 3])).numpy())
  ```
  """
  x = self._to_const_val(x)
  if not isinstance(x, Tensor) and not reverse:
    # simple pow identities
    if x < 0: return self.reciprocal().pow(-x).cast(self.dtype)
    if x == 0: return 1 + self * 0
    # rewrite pow 0.5 to sqrt
    if int(x - 0.5) + 0.5 == x: return self.pow(int(x - 0.5)) * self.sqrt()
    if int(x) == x: return self.pow(x // 2).square() * (1 if x % 2 == 0 else self)

  # positive const ** self
  if not isinstance(x, Tensor) and reverse and x > 0: return self.mul(math.log(x)).exp()

  base, exponent = self._broadcasted(x, reverse=reverse)
  # start with b ** e = exp(e * log(b))
  ret = base.abs().log().mul(exponent).exp()
  # correct sign of negative base with odd exponent (cos has a period of 2pi so we use it here to get the oddness of the exponent)
  negative_base = (base < 0).detach().where(1, 0)
  # 1 for non-negative base or negative even exponent, -1 for negative odd exponent, don't care about non-integer exponent
  correct_sign = 1 + negative_base * ((exponent * math.pi).cos() - 1)
  # inject nan for negative base and non-integer exponent
  inject_nan = (negative_base * (exponent != exponent.trunc())).detach().where(math.nan, 1)
  # apply correct_sign inject_nan, and fix 0 ** 0 = 1
  ret = ((base == 0) * (exponent == 0)).detach().where(1, ret * correct_sign * inject_nan)
  return ret.round().cast(self.dtype) if not dtypes.is_float(self.dtype) else ret

maximum ¤

maximum(x: Union[Tensor, ConstType]) -> Tensor

Computes element-wise maximum of self and x.

print(Tensor([-1, 2, 3]).maximum(1).numpy())
[1 2 3]
print(Tensor([-1, 2, 3]).maximum(Tensor([-4, -2, 9])).numpy())
[-1  2  9]

Source code in tinygrad/tensor.py
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
def maximum(self, x:Union[Tensor, ConstType]) -> Tensor:
  """
  Computes element-wise maximum of `self` and `x`.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-1, 2, 3]).maximum(1).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-1, 2, 3]).maximum(Tensor([-4, -2, 9])).numpy())
  ```
  """
  # NOTE: the mid-point is for backward, revisit after new gradient API
  if self.is_floating_point(): return (self<x).detach().where(x, (self==x).detach().where(((self * 0.5 + x * 0.5).cast(self.dtype)), self))
  return (self<x).detach().where(x, self)

minimum ¤

minimum(x: Union[Tensor, ConstType]) -> Tensor

Computes element-wise minimum of self and x.

print(Tensor([-1, 2, 3]).minimum(1).numpy())
[-1  1  1]
print(Tensor([-1, 2, 3]).minimum(Tensor([-4, -2, 9])).numpy())
[-4 -2  3]

Source code in tinygrad/tensor.py
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
def minimum(self, x:Union[Tensor, ConstType]) -> Tensor:
  """
  Computes element-wise minimum of `self` and `x`.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-1, 2, 3]).minimum(1).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-1, 2, 3]).minimum(Tensor([-4, -2, 9])).numpy())
  ```
  """
  t, x = self._broadcasted(x)
  return t._inverse().maximum(x._inverse())._inverse()

where ¤

where(
    x: Union[Tensor, ConstType, sint],
    y: Union[Tensor, ConstType, sint],
)

Return a tensor of elements selected from either x or y, depending on self. output_i = x_i if self_i else y_i.

cond = Tensor([[True, True, False], [True, False, False]])
print(cond.where(1, 3).numpy())
[[1 1 3]
 [1 3 3]]
Tensor.manual_seed(42)
cond = Tensor.randn(2, 3)
print(cond.numpy())
[[ 0.9779  0.4678  0.5526]
 [-0.3288 -0.8555  0.2753]]
print((cond > 0).where(cond, -float("inf")).numpy())
[[0.9779 0.4678 0.5526]
 [  -inf   -inf 0.2753]]

Source code in tinygrad/tensor.py
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
def where(self:Tensor, x:Union[Tensor, ConstType, sint], y:Union[Tensor, ConstType, sint]):
  """
  Return a tensor of elements selected from either `x` or `y`, depending on `self`.
  `output_i = x_i if self_i else y_i`.

  ```python exec="true" source="above" session="tensor" result="python"
  cond = Tensor([[True, True, False], [True, False, False]])
  print(cond.where(1, 3).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  cond = Tensor.randn(2, 3)
  print(cond.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print((cond > 0).where(cond, -float("inf")).numpy())
  ```
  """
  if isinstance(x, Tensor): x, y = x._broadcasted(y)
  elif isinstance(y, Tensor): y, x = y._broadcasted(x)
  cond, x = self._broadcasted(x, match_dtype=False)
  cond, y = cond._broadcasted(y, match_dtype=False)
  return F.Where.apply(cond.cast(dtypes.bool), *x._broadcasted(y))

Casting Ops¤

cast ¤

cast(dtype: DTypeLike) -> Tensor

Casts self to the given dtype.

t = Tensor([-1, 2.5, 3], dtype=dtypes.float)
print(t.dtype, t.numpy())
dtypes.float [-1.   2.5  3. ]
t = t.cast(dtypes.int32)
print(t.dtype, t.numpy())
dtypes.int [-1  2  3]
t = t.cast(dtypes.uint8)
print(t.dtype, t.numpy())
dtypes.uchar [255   2   3]

Source code in tinygrad/tensor.py
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
def cast(self, dtype:DTypeLike) -> Tensor:
  """
  Casts `self` to the given `dtype`.

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor([-1, 2.5, 3], dtype=dtypes.float)
  print(t.dtype, t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  t = t.cast(dtypes.int32)
  print(t.dtype, t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  t = t.cast(dtypes.uint8)
  print(t.dtype, t.numpy())
  ```
  """
  if (dt:=to_dtype(dtype)) in {dtypes.uint8, dtypes.uint16} and dtypes.is_float(self.dtype):
    # NOTE: values within the int32 range and outside the unsigned dtype range will cause values to wrap around
    return F.Cast.apply(F.Cast.apply(self, dtype=dtypes.int32), dtype=dt)
  return self if self.dtype == dt else F.Cast.apply(self, dtype=dt)

bitcast ¤

bitcast(dtype: DTypeLike) -> Tensor

Bitcasts self to the given dtype of the same itemsize.

self must not require a gradient.

t = Tensor([-1, 2, 3], dtype=dtypes.int32)
print(t.dtype, t.numpy())
dtypes.int [-1  2  3]
t = t.bitcast(dtypes.uint32)
print(t.dtype, t.numpy())
dtypes.uint [4294967295          2          3]

Source code in tinygrad/tensor.py
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
def bitcast(self, dtype:DTypeLike) -> Tensor:
  """
  Bitcasts `self` to the given `dtype` of the same itemsize.

  `self` must not require a gradient.

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor([-1, 2, 3], dtype=dtypes.int32)
  print(t.dtype, t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  t = t.bitcast(dtypes.uint32)
  print(t.dtype, t.numpy())
  ```
  """
  if self.requires_grad: raise RuntimeError("can't backprop through bitcast")
  dt = to_dtype(dtype)
  if (ns:=dt.itemsize) != (os:=self.dtype.itemsize) and (self.shape[-1]*os) % ns != 0: raise RuntimeError("unsupported size in bitcast")
  if (not isinstance(self.device, str) or not self.device.startswith("DISK")) and ns != os:
    new_uint, old_uint = to_dtype(f"uint{8*ns}"), to_dtype(f"uint{8*os}")
    tmp = self.bitcast(old_uint)
    if ns > os: return functools.reduce(Tensor.add, (tmp[..., i::ns//os].cast(new_uint) << 8*i*os for i in range(ns//os))).bitcast(dtype)
    return Tensor.stack(*(tmp>>8*i*ns for i in range(os//ns)), dim=-1).flatten(-2).cast(new_uint).bitcast(dtype)
  return F.Cast.apply(self, dtype=dt, bitcast=True) if self.dtype != dt else self

float ¤

float() -> Tensor

Convenience method to cast self to a float32 Tensor.

t = Tensor([-1, 2, 3], dtype=dtypes.int32)
print(t.dtype, t.numpy())
dtypes.int [-1  2  3]
t = t.float()
print(t.dtype, t.numpy())
dtypes.float [-1.  2.  3.]

Source code in tinygrad/tensor.py
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
def float(self) -> Tensor:
  """
  Convenience method to cast `self` to a `float32` Tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor([-1, 2, 3], dtype=dtypes.int32)
  print(t.dtype, t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  t = t.float()
  print(t.dtype, t.numpy())
  ```
  """
  return self.cast(dtypes.float32)

half ¤

half() -> Tensor

Convenience method to cast self to a float16 Tensor.

t = Tensor([-1, 2, 3], dtype=dtypes.int32)
print(t.dtype, t.numpy())
dtypes.int [-1  2  3]
t = t.half()
print(t.dtype, t.numpy())
dtypes.half [-1.  2.  3.]

Source code in tinygrad/tensor.py
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
def half(self) -> Tensor:
  """
  Convenience method to cast `self` to a `float16` Tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor([-1, 2, 3], dtype=dtypes.int32)
  print(t.dtype, t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  t = t.half()
  print(t.dtype, t.numpy())
  ```
  """
  return self.cast(dtypes.float16)

int ¤

int() -> Tensor

Convenience method to cast self to a int32 Tensor.

t = Tensor([-1.5, -0.5, 0.0, 0.5, 1.5])
print(t.dtype, t.numpy())
dtypes.float [-1.5 -0.5  0.   0.5  1.5]
t = t.int()
print(t.dtype, t.numpy())
dtypes.int [-1  0  0  0  1]

Source code in tinygrad/tensor.py
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
def int(self) -> Tensor:
  """
  Convenience method to cast `self` to a `int32` Tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor([-1.5, -0.5, 0.0, 0.5, 1.5])
  print(t.dtype, t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  t = t.int()
  print(t.dtype, t.numpy())
  ```
  """
  return self.cast(dtypes.int32)

bool ¤

bool() -> Tensor

Convenience method to cast self to a bool Tensor.

t = Tensor([-1, 0, 1])
print(t.dtype, t.numpy())
dtypes.int [-1  0  1]
t = t.bool()
print(t.dtype, t.numpy())
dtypes.bool [ True False  True]

Source code in tinygrad/tensor.py
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
def bool(self) -> Tensor:
  """
  Convenience method to cast `self` to a `bool` Tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor([-1, 0, 1])
  print(t.dtype, t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  t = t.bool()
  print(t.dtype, t.numpy())
  ```
  """
  return self.cast(dtypes.bool)