Skip to content

Elementwise

Elementwise ops operate on a per element basis. They don't change the shape of the tensor.

Unary Ops (math)¤

logical_not ¤

logical_not() -> Tensor

Computes the logical NOT of the tensor element-wise.

print(Tensor([False, True]).logical_not().numpy())
[ True False]
Source code in tinygrad/tensor.py
2708
2709
2710
2711
2712
2713
2714
2715
2716
def logical_not(self) -> Tensor:
  """
  Computes the logical NOT of the tensor element-wise.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([False, True]).logical_not().numpy())
  ```
  """
  return self.cast(dtypes.bool)._apply_broadcasted_uop(UOp.ne, True)

neg ¤

neg() -> Tensor

Negates the tensor element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).neg().numpy())
[ 3.  2.  1. -0. -1. -2. -3.]
Source code in tinygrad/tensor.py
2718
2719
2720
2721
2722
2723
2724
2725
2726
def neg(self) -> Tensor:
  """
  Negates the tensor element-wise.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).neg().numpy())
  ```
  """
  return self*-1 if self.dtype != dtypes.bool else self.logical_not()

log ¤

log() -> Tensor

Computes the natural logarithm element-wise.

See: https://en.wikipedia.org/wiki/Logarithm

print(Tensor([1., 2., 4., 8.]).log().numpy())
[0.     0.6931 1.3863 2.0794]
Source code in tinygrad/tensor.py
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
def log(self) -> Tensor:
  """
  Computes the natural logarithm element-wise.

  See: https://en.wikipedia.org/wiki/Logarithm

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([1., 2., 4., 8.]).log().numpy())
  ```
  """
  return self.log2()*math.log(2)

log2 ¤

log2() -> Tensor

Computes the base-2 logarithm element-wise.

See: https://en.wikipedia.org/wiki/Logarithm

print(Tensor([1., 2., 4., 8.]).log2().numpy())
[0. 1. 2. 3.]
Source code in tinygrad/tensor.py
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
def log2(self) -> Tensor:
  """
  Computes the base-2 logarithm element-wise.

  See: https://en.wikipedia.org/wiki/Logarithm

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([1., 2., 4., 8.]).log2().numpy())
  ```
  """
  return self.cast(least_upper_float(self.dtype))._apply_uop(UOp.log2)

exp ¤

exp() -> Tensor

Computes the exponential function element-wise.

See: https://en.wikipedia.org/wiki/Exponential_function

print(Tensor([0., 1., 2., 3.]).exp().numpy())
[ 1.      2.7183  7.3891 20.0855]
Source code in tinygrad/tensor.py
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
def exp(self) -> Tensor:
  """
  Computes the exponential function element-wise.

  See: https://en.wikipedia.org/wiki/Exponential_function

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([0., 1., 2., 3.]).exp().numpy())
  ```
  """
  # TODO: make it generic, and same thing to log and cos
  if self.is_floating_point(): return self.cast(least_upper_dtype(self.dtype, dtypes.float32)).mul(1/math.log(2)).exp2().cast(self.dtype)
  # TODO: behavior when DEFAULT_FLOAT is bfloat16 and input is int32?
  return self.mul(1/math.log(2)).exp2()

exp2 ¤

exp2() -> Tensor

Computes the base-2 exponential function element-wise.

See: https://en.wikipedia.org/wiki/Exponential_function

print(Tensor([0., 1., 2., 3.]).exp2().numpy())
[1. 2. 4. 8.]
Source code in tinygrad/tensor.py
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
def exp2(self) -> Tensor:
  """
  Computes the base-2 exponential function element-wise.

  See: https://en.wikipedia.org/wiki/Exponential_function

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([0., 1., 2., 3.]).exp2().numpy())
  ```
  """
  return self.cast(least_upper_float(self.dtype))._apply_uop(UOp.exp2)

sqrt ¤

sqrt() -> Tensor

Computes the square root of the tensor element-wise.

print(Tensor([1., 2., 3., 4.]).sqrt().numpy())
[1.     1.4142 1.7321 2.    ]
Source code in tinygrad/tensor.py
2839
2840
2841
2842
2843
2844
2845
2846
2847
def sqrt(self) -> Tensor:
  """
  Computes the square root of the tensor element-wise.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([1., 2., 3., 4.]).sqrt().numpy())
  ```
  """
  return self.cast(least_upper_float(self.dtype))._apply_uop(UOp.sqrt)

rsqrt ¤

rsqrt() -> Tensor

Computes the reciprocal of the square root of the tensor element-wise.

print(Tensor([1., 2., 3., 4.]).rsqrt().numpy())
[1.     0.7071 0.5774 0.5   ]
Source code in tinygrad/tensor.py
2849
2850
2851
2852
2853
2854
2855
2856
2857
def rsqrt(self) -> Tensor:
  """
  Computes the reciprocal of the square root of the tensor element-wise.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([1., 2., 3., 4.]).rsqrt().numpy())
  ```
  """
  return self.sqrt().reciprocal()

sin ¤

sin() -> Tensor

Computes the sine of the tensor element-wise.

print(Tensor([0., math.pi/2, math.pi, 3*math.pi/2, 2*math.pi]).sin().numpy())
[ 0.  1. -0. -1.  0.]
Source code in tinygrad/tensor.py
2859
2860
2861
2862
2863
2864
2865
2866
2867
def sin(self) -> Tensor:
  """
  Computes the sine of the tensor element-wise.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([0., math.pi/2, math.pi, 3*math.pi/2, 2*math.pi]).sin().numpy())
  ```
  """
  return self.cast(least_upper_float(self.dtype))._apply_uop(UOp.sin)

cos ¤

cos() -> Tensor

Computes the cosine of the tensor element-wise.

print(Tensor([0., math.pi/2, math.pi, 3*math.pi/2, 2*math.pi]).cos().numpy())
[ 1.0000e+00  0.0000e+00 -1.0000e+00 -2.3842e-07  1.0000e+00]
Source code in tinygrad/tensor.py
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
def cos(self) -> Tensor:
  """
  Computes the cosine of the tensor element-wise.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([0., math.pi/2, math.pi, 3*math.pi/2, 2*math.pi]).cos().numpy())
  ```
  """
  if self.is_floating_point(): return ((math.pi/2)-self.cast(least_upper_dtype(self.dtype, dtypes.float32))).sin().cast(self.dtype)
  return ((math.pi/2)-self).sin()

tan ¤

tan() -> Tensor

Computes the tangent of the tensor element-wise.

print(Tensor([0., math.pi/4, math.pi/2, 3*math.pi/4, math.pi]).tan().numpy())
[ 0.  1. inf -1.  0.]
Source code in tinygrad/tensor.py
2880
2881
2882
2883
2884
2885
2886
2887
2888
def tan(self) -> Tensor:
  """
  Computes the tangent of the tensor element-wise.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([0., math.pi/4, math.pi/2, 3*math.pi/4, math.pi]).tan().numpy())
  ```
  """
  return self.sin() / self.cos()

asin ¤

asin() -> Tensor

Computes the inverse sine (arcsine) of the tensor element-wise.

print(Tensor([-0.9, -0.6, -0.3, 0., 0.3, 0.6, 0.9]).asin().numpy())
[-1.1198 -0.6435 -0.3047  0.      0.3047  0.6435  1.1198]
Source code in tinygrad/tensor.py
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
def asin(self) -> Tensor:
  """
  Computes the inverse sine (arcsine) of the tensor element-wise.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-0.9, -0.6, -0.3, 0., 0.3, 0.6, 0.9]).asin().numpy())
  ```
  """
  # https://personal.math.ubc.ca/~cbm/aands/page_81.htm 4.4.46
  coefficients = [-0.0012624911, 0.0066700901, -0.0170881256, 0.0308918810, -0.0501743046, 0.0889789874, -0.2145988016, 1.5707963050]
  x = math.pi / 2 - (1.0 - self.abs()).sqrt() * polyN(self.abs(), coefficients)
  return self.sign() * x

acos ¤

acos() -> Tensor

Computes the inverse cosine (arccosine) of the tensor element-wise.

print(Tensor([-0.9, -0.6, -0.3, 0., 0.3, 0.6, 0.9]).acos().numpy())
[2.6906 2.2143 1.8755 1.5708 1.2661 0.9273 0.451 ]
Source code in tinygrad/tensor.py
2903
2904
2905
2906
2907
2908
2909
2910
2911
def acos(self) -> Tensor:
  """
  Computes the inverse cosine (arccosine) of the tensor element-wise.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-0.9, -0.6, -0.3, 0., 0.3, 0.6, 0.9]).acos().numpy())
  ```
  """
  return math.pi / 2 - self.asin()

atan ¤

atan() -> Tensor

Computes the inverse tangent (arctan) of the tensor element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).atan().numpy())
[-1.249  -1.1071 -0.7854  0.      0.7854  1.1071  1.249 ]
Source code in tinygrad/tensor.py
2913
2914
2915
2916
2917
2918
2919
2920
2921
def atan(self) -> Tensor:
  """
  Computes the inverse tangent (arctan) of the tensor element-wise.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).atan().numpy())
  ```
  """
  return (self / (1 + self * self).sqrt()).asin()

trunc ¤

trunc() -> Tensor

Truncates the tensor element-wise.

print(Tensor([-3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5]).trunc().numpy())
[-3. -2. -1. -0.  0.  1.  2.  3.]
Source code in tinygrad/tensor.py
2925
2926
2927
2928
2929
2930
2931
2932
2933
def trunc(self: Tensor) -> Tensor:
  """
  Truncates the tensor element-wise.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5]).trunc().numpy())
  ```
  """
  return self._apply_uop(UOp.trunc)

ceil ¤

ceil() -> Tensor

Rounds the tensor element-wise towards positive infinity.

print(Tensor([-3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5]).ceil().numpy())
[-3. -2. -1. -0.  1.  2.  3.  4.]
Source code in tinygrad/tensor.py
2935
2936
2937
2938
2939
2940
2941
2942
2943
def ceil(self: Tensor) -> Tensor:
  """
  Rounds the tensor element-wise towards positive infinity.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5]).ceil().numpy())
  ```
  """
  return (self > (b := self.trunc())).where(b+1, b)

floor ¤

floor() -> Tensor

Rounds the tensor element-wise towards negative infinity.

print(Tensor([-3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5]).floor().numpy())
[-4. -3. -2. -1.  0.  1.  2.  3.]
Source code in tinygrad/tensor.py
2945
2946
2947
2948
2949
2950
2951
2952
2953
def floor(self: Tensor) -> Tensor:
  """
  Rounds the tensor element-wise towards negative infinity.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5]).floor().numpy())
  ```
  """
  return (self < (b := self.trunc())).where(b-1, b)

round ¤

round() -> Tensor

Rounds the tensor element-wise with rounding half to even.

print(Tensor([-3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5]).round().numpy())
[-4. -2. -2.  0.  0.  2.  2.  4.]
Source code in tinygrad/tensor.py
2955
2956
2957
2958
2959
2960
2961
2962
2963
def round(self: Tensor) -> Tensor:
  """
  Rounds the tensor element-wise with rounding half to even.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5]).round().numpy())
  ```
  """
  return ((self > 0) == ((b := self.trunc() / 2.0).trunc() == b)).where((self - 0.5).ceil(), (self + 0.5).floor())

isinf ¤

isinf(
    detect_positive: bool = True,
    detect_negative: bool = True,
) -> Tensor

Checks the tensor element-wise to return True where the element is infinity, otherwise returns False

print(Tensor([1, float('inf'), 2, float('-inf'), float('nan')]).isinf().numpy())
[False  True False  True False]
Source code in tinygrad/tensor.py
2965
2966
2967
2968
2969
2970
2971
2972
2973
def isinf(self:Tensor, detect_positive:bool=True, detect_negative:bool=True) -> Tensor:
  """
  Checks the tensor element-wise to return True where the element is infinity, otherwise returns False

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([1, float('inf'), 2, float('-inf'), float('nan')]).isinf().numpy())
  ```
  """
  return (self == float("inf")) * detect_positive + (self == float("-inf")) * detect_negative

isnan ¤

isnan() -> Tensor

Checks the tensor element-wise to return True where the element is NaN, otherwise returns False

print(Tensor([1, float('inf'), 2, float('-inf'), float('nan')]).isnan().numpy())
[False False False False  True]
Source code in tinygrad/tensor.py
2975
2976
2977
2978
2979
2980
2981
2982
2983
def isnan(self:Tensor) -> Tensor:
  """
  Checks the tensor element-wise to return True where the element is NaN, otherwise returns False

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([1, float('inf'), 2, float('-inf'), float('nan')]).isnan().numpy())
  ```
  """
  return self != self

isfinite ¤

isfinite() -> Tensor

Checks the tensor element-wise to return True where the element is finite, otherwise returns False

print(Tensor([1, float('inf'), 2, float('-inf'), float('nan')]).isfinite().numpy())
[ True False  True False False]
Source code in tinygrad/tensor.py
2985
2986
2987
2988
2989
2990
2991
2992
2993
def isfinite(self:Tensor) -> Tensor:
  """
  Checks the tensor element-wise to return True where the element is finite, otherwise returns False

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([1, float('inf'), 2, float('-inf'), float('nan')]).isfinite().numpy())
  ```
  """
  return (self.isinf()|self.isnan()).logical_not()

lerp ¤

lerp(end: Tensor, weight: Tensor | float) -> Tensor

Linearly interpolates between self and end by weight.

print(Tensor([1., 2., 3.]).lerp(Tensor([4., 5., 6.]), 0.5).numpy())
[2.5 3.5 4.5]
Source code in tinygrad/tensor.py
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
def lerp(self, end:Tensor, weight:Tensor|float) -> Tensor:
  """
  Linearly interpolates between `self` and `end` by `weight`.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([1., 2., 3.]).lerp(Tensor([4., 5., 6.]), 0.5).numpy())
  ```
  """
  if self.dtype == dtypes.uint8 and isinstance(weight, Tensor):
    w_i = (weight * (1<<(W_PREC:=7)) + 0.5).cast(dtypes.int16)
    return (self+(((end - self).cast(dtypes.int8) * w_i + (1<<W_PREC-1)).cast(dtypes.uint16) >> W_PREC)).cast(dtypes.uint8)
  return self + (end - self) * weight

square ¤

square() -> Tensor

Squares the tensor element-wise. Equivalent to self*self.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).square().numpy())
[9. 4. 1. 0. 1. 4. 9.]
Source code in tinygrad/tensor.py
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
def square(self) -> Tensor:
  """
  Squares the tensor element-wise.
  Equivalent to `self*self`.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).square().numpy())
  ```
  """
  return self*self

clamp ¤

clamp(min_=None, max_=None) -> Tensor

Clips (clamps) the values in the tensor between min_ and max_ element-wise. If min_ is None, there is no lower bound. If max_ is None, there is no upper bound.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).clip(-1, 1).numpy())
[-1. -1. -1.  0.  1.  1.  1.]
Source code in tinygrad/tensor.py
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
def clamp(self, min_=None, max_=None) -> Tensor:
  """
  Clips (clamps) the values in the tensor between `min_` and `max_` element-wise.
  If `min_` is `None`, there is no lower bound. If `max_` is None, there is no upper bound.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).clip(-1, 1).numpy())
  ```
  """
  if min_ is None and max_ is None: raise RuntimeError("at least one of 'min_' or 'max_' must not be None")
  ret = (self < min_).where(min_, self) if min_ is not None else self
  return (ret > max_).where(max_, ret) if max_ is not None else ret

clip ¤

clip(min_=None, max_=None) -> Tensor

Alias for Tensor.clamp.

Source code in tinygrad/tensor.py
3032
3033
3034
3035
3036
def clip(self, min_=None, max_=None) -> Tensor:
  """
  Alias for `Tensor.clamp`.
  """
  return self.clamp(min_, max_)

sign ¤

sign() -> Tensor

Returns the sign of the tensor element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).sign().numpy())
[-1. -1. -1.  0.  1.  1.  1.]
Source code in tinygrad/tensor.py
3038
3039
3040
3041
3042
3043
3044
3045
3046
def sign(self) -> Tensor:
  """
  Returns the sign of the tensor element-wise.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).sign().numpy())
  ```
  """
  return self.ne(0).where((self<0).where(self.full_like(-1), self.full_like(1)), self.full_like(0)) + self*0

abs ¤

abs() -> Tensor

Computes the absolute value of the tensor element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).abs().numpy())
[3. 2. 1. 0. 1. 2. 3.]
Source code in tinygrad/tensor.py
3048
3049
3050
3051
3052
3053
3054
3055
3056
def abs(self) -> Tensor:
  """
  Computes the absolute value of the tensor element-wise.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).abs().numpy())
  ```
  """
  return self * self.sign()

reciprocal ¤

reciprocal() -> Tensor

Computes 1/x element-wise.

print(Tensor([1., 2., 3., 4.]).reciprocal().numpy())
[1.     0.5    0.3333 0.25  ]
Source code in tinygrad/tensor.py
3058
3059
3060
3061
3062
3063
3064
3065
3066
def reciprocal(self) -> Tensor:
  """
  Computes `1/x` element-wise.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([1., 2., 3., 4.]).reciprocal().numpy())
  ```
  """
  return self.cast(least_upper_float(self.dtype))._apply_uop(UOp.reciprocal)

Unary Ops (activation)¤

relu ¤

relu() -> Tensor

Applies the Rectified Linear Unit (ReLU) function element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).relu().numpy())
[0. 0. 0. 0. 1. 2. 3.]
Source code in tinygrad/tensor.py
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
def relu(self) -> Tensor:
  """
  Applies the Rectified Linear Unit (ReLU) function element-wise.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).relu().numpy())
  ```
  """
  # NOTE: if you write this as self.maximum(0) the gradient is wrong, passing through half when self is 0
  return (self>0).where(self, 0)

sigmoid ¤

sigmoid() -> Tensor

Applies the Sigmoid function element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).sigmoid().numpy())
[0.0474 0.1192 0.2689 0.5    0.7311 0.8808 0.9526]
Source code in tinygrad/tensor.py
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
def sigmoid(self) -> Tensor:
  """
  Applies the Sigmoid function element-wise.

  - Described: https://en.wikipedia.org/wiki/Sigmoid_function

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).sigmoid().numpy())
  ```
  """
  return (1 + (self * (-1/math.log(2))).exp2()).reciprocal()

logsigmoid ¤

logsigmoid() -> Tensor

Applies the LogSigmoid function element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).logsigmoid().numpy())
[-3.0486 -2.1269 -1.3133 -0.6931 -0.3133 -0.1269 -0.0486]
Source code in tinygrad/tensor.py
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
def logsigmoid(self) -> Tensor:
  """
  Applies the LogSigmoid function element-wise.

  - See: https://docs.pytorch.org/docs/stable/generated/torch.nn.functional.logsigmoid.html

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).logsigmoid().numpy())
  ```
  """
  return -(-self).softplus()

hardsigmoid ¤

hardsigmoid(
    alpha: float = 1 / 6, beta: float = 0.5
) -> Tensor

Applies the Hardsigmoid function element-wise. NOTE: default alpha and beta values are taken from torch

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).hardsigmoid().numpy())
[0.     0.1667 0.3333 0.5    0.6667 0.8333 1.    ]
Source code in tinygrad/tensor.py
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
def hardsigmoid(self, alpha:float=1/6, beta:float=0.5) -> Tensor:
  """
  Applies the Hardsigmoid function element-wise.
  NOTE: default `alpha` and `beta` values are taken from torch

  - See: https://pytorch.org/docs/stable/generated/torch.nn.functional.hardsigmoid.html

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).hardsigmoid().numpy())
  ```
  """
  return (alpha * self + beta).relu() - (alpha * self + beta - 1).relu()

elu ¤

elu(alpha=1.0) -> Tensor

Applies the Exponential Linear Unit (ELU) function element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).elu().numpy())
[-0.9502 -0.8647 -0.6321  0.      1.      2.      3.    ]
Source code in tinygrad/tensor.py
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
def elu(self, alpha=1.0) -> Tensor:
  """
  Applies the Exponential Linear Unit (ELU) function element-wise.

  - Paper: https://arxiv.org/abs/1511.07289v5

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).elu().numpy())
  ```
  """
  return self.relu() - alpha*(1-self.exp()).relu()

celu ¤

celu(alpha=1.0) -> Tensor

Applies the Continuously differentiable Exponential Linear Unit (CELU) function element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).celu().numpy())
[-0.9502 -0.8647 -0.6321  0.      1.      2.      3.    ]
Source code in tinygrad/tensor.py
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
def celu(self, alpha=1.0) -> Tensor:
  """
  Applies the Continuously differentiable Exponential Linear Unit (CELU) function element-wise.

  - Paper: https://arxiv.org/abs/1704.07483

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).celu().numpy())
  ```
  """
  return self.maximum(0) + (alpha * ((self / alpha).exp() - 1)).minimum(0)

selu ¤

selu(alpha=1.67326, gamma=1.0507) -> Tensor

Applies the Scaled Exponential Linear Unit (SELU) function element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).selu().numpy())
[-1.6706 -1.5202 -1.1113  0.      1.0507  2.1014  3.1521]
Source code in tinygrad/tensor.py
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
def selu(self, alpha=1.67326, gamma=1.0507) -> Tensor:
  """
  Applies the Scaled Exponential Linear Unit (SELU) function element-wise.

  - Paper: https://arxiv.org/abs/1706.02515v5

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).selu().numpy())
  ```
  """
  return gamma * (self >= 0).detach().where(self, alpha * (self.exp() - 1))

swish ¤

swish() -> Tensor

See .silu()

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).swish().numpy())
[-0.1423 -0.2384 -0.2689  0.      0.7311  1.7616  2.8577]
Source code in tinygrad/tensor.py
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
def swish(self) -> Tensor:
  """
  See `.silu()`

  - Paper: https://arxiv.org/abs/1710.05941v1

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).swish().numpy())
  ```
  """
  return self * self.sigmoid()

silu ¤

silu() -> Tensor

Applies the Sigmoid Linear Unit (SiLU) function element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).silu().numpy())
[-0.1423 -0.2384 -0.2689  0.      0.7311  1.7616  2.8577]
Source code in tinygrad/tensor.py
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
def silu(self) -> Tensor:
  """
  Applies the Sigmoid Linear Unit (SiLU) function element-wise.

  - Paper: https://arxiv.org/abs/1606.08415

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).silu().numpy())
  ```
  """
  return self.swish()   # The SiLU function is also known as the swish function.

relu6 ¤

relu6() -> Tensor

Applies the ReLU6 function element-wise.

print(Tensor([-9., -6., -3., 0., 3., 6., 9.]).relu6().numpy())
[0. 0. 0. 0. 3. 6. 6.]
Source code in tinygrad/tensor.py
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
def relu6(self) -> Tensor:
  """
  Applies the ReLU6 function element-wise.

  - Paper: https://arxiv.org/abs/1704.04861v1

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-9., -6., -3., 0., 3., 6., 9.]).relu6().numpy())
  ```
  """
  return self.relu() - (self-6).relu()

hardswish ¤

hardswish() -> Tensor

Applies the Hardswish function element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).hardswish().numpy())
[-0.     -0.3333 -0.3333  0.      0.6667  1.6667  3.    ]
Source code in tinygrad/tensor.py
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
def hardswish(self) -> Tensor:
  """
  Applies the Hardswish function element-wise.

  - Paper: https://arxiv.org/abs/1905.02244v5

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).hardswish().numpy())
  ```
  """
  return self * (self+3).relu6() * (1/6)

tanh ¤

tanh() -> Tensor

Applies the Hyperbolic Tangent (tanh) function element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).tanh().numpy())
[-0.9951 -0.964  -0.7616  0.      0.7616  0.964   0.9951]
Source code in tinygrad/tensor.py
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
def tanh(self) -> Tensor:
  """
  Applies the Hyperbolic Tangent (tanh) function element-wise.

  - Described: https://en.wikipedia.org/wiki/Hyperbolic_functions#Tanh

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).tanh().numpy())
  ```
  """
  return 2.0 * ((2.0 * self).sigmoid()) - 1.0

sinh ¤

sinh() -> Tensor

Applies the Hyperbolic Sine (sinh) function element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).sinh().numpy())
[-10.0179  -3.6269  -1.1752   0.       1.1752   3.6269  10.0179]
Source code in tinygrad/tensor.py
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
def sinh(self) -> Tensor:
  """
  Applies the Hyperbolic Sine (sinh) function element-wise.

  - Described: https://en.wikipedia.org/wiki/Hyperbolic_functions#Sinh

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).sinh().numpy())
  ```
  """
  return (self.exp() - self.neg().exp()) / 2

cosh ¤

cosh() -> Tensor

Applies the Hyperbolic Cosine (cosh) function element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).cosh().numpy())
[10.0677  3.7622  1.5431  1.      1.5431  3.7622 10.0677]
Source code in tinygrad/tensor.py
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
def cosh(self) -> Tensor:
  """
  Applies the Hyperbolic Cosine (cosh) function element-wise.

  - Described: https://en.wikipedia.org/wiki/Hyperbolic_functions#Cosh

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).cosh().numpy())
  ```
  """
  return (self.exp() + self.neg().exp()) / 2

atanh ¤

atanh() -> Tensor

Applies the Inverse Hyperbolic Tangent (atanh) function element-wise.

print(Tensor([-0.9, -0.6, -0.3, 0., 0.3, 0.6, 0.9]).atanh().numpy())
[-1.4722 -0.6931 -0.3095  0.      0.3095  0.6931  1.4722]
Source code in tinygrad/tensor.py
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
def atanh(self) -> Tensor:
  """
  Applies the Inverse Hyperbolic Tangent (atanh) function element-wise.

  - Described: https://en.wikipedia.org/wiki/Inverse_hyperbolic_functions#atanh

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-0.9, -0.6, -0.3, 0., 0.3, 0.6, 0.9]).atanh().numpy())
  ```
  """
  return ((1 + self)/(1 - self)).log() / 2

asinh ¤

asinh() -> Tensor

Applies the Inverse Hyperbolic Sine (asinh) function element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).asinh().numpy())
[-1.8184 -1.4436 -0.8814  0.      0.8814  1.4436  1.8184]
Source code in tinygrad/tensor.py
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
def asinh(self) -> Tensor:
  """
  Applies the Inverse Hyperbolic Sine (asinh) function element-wise.

  - Described: https://en.wikipedia.org/wiki/Inverse_hyperbolic_functions#asinh

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).asinh().numpy())
  ```
  """
  return (self + (self.square() + 1).sqrt()).log()

acosh ¤

acosh() -> Tensor

Applies the Inverse Hyperbolic Cosine (acosh) function element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).acosh().numpy())
[   nan    nan    nan    nan 0.     1.317  1.7627]
Source code in tinygrad/tensor.py
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
def acosh(self) -> Tensor:
  """
  Applies the Inverse Hyperbolic Cosine (acosh) function element-wise.

  - Described: https://en.wikipedia.org/wiki/Inverse_hyperbolic_functions#acosh

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).acosh().numpy())
  ```
  """
  return (self + (self.square() - 1).sqrt()).log()

hardtanh ¤

hardtanh(min_val=-1, max_val=1) -> Tensor

Applies the Hardtanh function element-wise.

print(Tensor([-1.5, -1.0, -0.5, 0., 0.5, 1.0, 1.5]).hardtanh().numpy())
[-1.  -1.  -0.5  0.   0.5  1.   1. ]
Source code in tinygrad/tensor.py
3226
3227
3228
3229
3230
3231
3232
3233
3234
def hardtanh(self, min_val=-1, max_val=1) -> Tensor:
  """
  Applies the Hardtanh function element-wise.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-1.5, -1.0, -0.5, 0., 0.5, 1.0, 1.5]).hardtanh().numpy())
  ```
  """
  return self.clip(min_val, max_val)

erf ¤

erf() -> Tensor

Applies error function element-wise.

print(Tensor([-1.5, -1.0, -0.5, 0., 0.5, 1.0, 1.5]).erf().numpy())
[-0.9661 -0.8427 -0.5205  0.      0.5205  0.8427  0.9661]
Source code in tinygrad/tensor.py
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
def erf(self) -> Tensor:
  """
  Applies error function element-wise.

  - Described: https://en.wikipedia.org/wiki/Error_function

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-1.5, -1.0, -0.5, 0., 0.5, 1.0, 1.5]).erf().numpy())
  ```
  """
  # https://personal.math.ubc.ca/~cbm/aands/page_299.htm 7.1.26
  t = 1.0 / (1.0 + 0.3275911 * self.abs())
  return self.sign() * (1.0 - t * polyN(t, [1.061405429, -1.453152027, 1.421413741, -0.284496736, 0.254829592]) * (-self.square()).exp())

gelu ¤

gelu() -> Tensor

Applies the Gaussian Error Linear Unit (GELU) function element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).gelu().numpy())
[-0.0036 -0.0454 -0.1588  0.      0.8412  1.9546  2.9964]
Source code in tinygrad/tensor.py
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
def gelu(self) -> Tensor:
  """
  Applies the Gaussian Error Linear Unit (GELU) function element-wise.

  - Paper: https://arxiv.org/abs/1606.08415v5

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).gelu().numpy())
  ```
  """
  return 0.5 * self * (1 + (math.sqrt(2 / math.pi) * (self + 0.044715 * self ** 3)).tanh())

quick_gelu ¤

quick_gelu() -> Tensor

Applies the Sigmoid GELU approximation element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).quick_gelu().numpy())
[-0.0181 -0.0643 -0.1542  0.      0.8458  1.9357  2.9819]
Source code in tinygrad/tensor.py
3262
3263
3264
3265
3266
3267
3268
3269
3270
def quick_gelu(self) -> Tensor:
  """
  Applies the Sigmoid GELU approximation element-wise.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).quick_gelu().numpy())
  ```
  """
  return self * (self * 1.702).sigmoid()

leaky_relu ¤

leaky_relu(neg_slope=0.01) -> Tensor

Applies the Leaky ReLU function element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).leaky_relu().numpy())
[-0.03 -0.02 -0.01  0.    1.    2.    3.  ]
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).leaky_relu(neg_slope=0.42).numpy())
[-1.26 -0.84 -0.42  0.    1.    2.    3.  ]

Source code in tinygrad/tensor.py
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
def leaky_relu(self, neg_slope=0.01) -> Tensor:
  """
  Applies the Leaky ReLU function element-wise.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).leaky_relu().numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).leaky_relu(neg_slope=0.42).numpy())
  ```
  """
  return (self<0).where(neg_slope*self, self)

mish ¤

mish() -> Tensor

Applies the Mish function element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).mish().numpy())
[-0.1456 -0.2525 -0.3034  0.      0.8651  1.944   2.9865]
Source code in tinygrad/tensor.py
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
def mish(self) -> Tensor:
  """
  Applies the Mish function element-wise.

  - Paper: https://arxiv.org/abs/1908.08681v3

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).mish().numpy())
  ```
  """
  return self * self.softplus().tanh()

softplus ¤

softplus(beta=1.0) -> Tensor

Applies the Softplus function element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).softplus().numpy())
[0.0486 0.1269 0.3133 0.6931 1.3133 2.1269 3.0486]
Source code in tinygrad/tensor.py
3297
3298
3299
3300
3301
3302
3303
3304
3305
def softplus(self, beta=1.0) -> Tensor:
  """
  Applies the Softplus function element-wise.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).softplus().numpy())
  ```
  """
  return (1/beta) * (self*beta).logaddexp(0.0)

softsign ¤

softsign() -> Tensor

Applies the Softsign function element-wise.

print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).softsign().numpy())
[-0.75   -0.6667 -0.5     0.      0.5     0.6667  0.75  ]
Source code in tinygrad/tensor.py
3307
3308
3309
3310
3311
3312
3313
3314
3315
def softsign(self) -> Tensor:
  """
  Applies the Softsign function element-wise.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).softsign().numpy())
  ```
  """
  return self / (1 + self.abs())

Elementwise Ops (broadcasted)¤

add ¤

add(x: Self | ConstType, reverse: bool = False)

Adds self and x. Equivalent to self + x. Supports broadcasting to a common shape, type promotion, and integer, float, boolean inputs.

Tensor.manual_seed(42)
t = Tensor.randn(4)
print(t.numpy())
[-0.5144  1.085   0.9089 -0.0841]
print(t.add(20).numpy())
[19.4856 21.085  20.9089 19.9159]
print(t.add(Tensor([[2.0], [3.5]])).numpy())
[[1.4856 3.085  2.9089 1.9159]
 [2.9856 4.585  4.4089 3.4159]]

Source code in tinygrad/mixin/math.py
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
def add(self, x: Self | ConstType, reverse: bool = False):
  """
  Adds `self` and `x`.
  Equivalent to `self + x`.
  Supports broadcasting to a common shape, type promotion, and integer, float, boolean inputs.
  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  t = Tensor.randn(4)
  print(t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.add(20).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.add(Tensor([[2.0], [3.5]])).numpy())
  ```
  """
  return self._binop(Ops.ADD, x, reverse)

sub ¤

sub(x: Tensor | ConstType, reverse=False) -> Tensor

Subtracts x from self. Equivalent to self - x. Supports broadcasting to a common shape, type promotion, and integer, float, boolean inputs.

Tensor.manual_seed(42)
t = Tensor.randn(4)
print(t.numpy())
[-0.5144  1.085   0.9089 -0.0841]
print(t.sub(20).numpy())
[-20.5144 -18.915  -19.0911 -20.0841]
print(t.sub(Tensor([[2.0], [3.5]])).numpy())
[[-2.5144 -0.915  -1.0911 -2.0841]
 [-4.0144 -2.415  -2.5911 -3.5841]]

Source code in tinygrad/tensor.py
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
def sub(self, x:Tensor|ConstType, reverse=False) -> Tensor:
  """
  Subtracts `x` from `self`.
  Equivalent to `self - x`.
  Supports broadcasting to a common shape, type promotion, and integer, float, boolean inputs.

  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  t = Tensor.randn(4)
  print(t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.sub(20).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.sub(Tensor([[2.0], [3.5]])).numpy())
  ```
  """
  a, b = self._broadcasted(x, reverse)
  return a + (-b)

mul ¤

mul(x: Self | ConstType, reverse: bool = False)

Multiplies self and x. Equivalent to self * x. Supports broadcasting to a common shape, type promotion, and integer, float, boolean inputs.

Tensor.manual_seed(42)
t = Tensor.randn(4)
print(t.numpy())
[-0.5144  1.085   0.9089 -0.0841]
print(t.mul(3).numpy())
[-1.5431  3.2549  2.7267 -0.2523]
print(t.mul(Tensor([[-1.0], [2.0]])).numpy())
[[ 0.5144 -1.085  -0.9089  0.0841]
 [-1.0287  2.17    1.8178 -0.1682]]

Source code in tinygrad/mixin/math.py
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
def mul(self, x: Self | ConstType, reverse: bool = False):
  """
  Multiplies `self` and `x`.
  Equivalent to `self * x`.
  Supports broadcasting to a common shape, type promotion, and integer, float, boolean inputs.

  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  t = Tensor.randn(4)
  print(t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.mul(3).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.mul(Tensor([[-1.0], [2.0]])).numpy())
  ```
  """
  return self._binop(Ops.MUL, x, reverse)

div ¤

div(
    x: Tensor | ConstType,
    reverse=False,
    rounding_mode: Literal["trunc", "floor"] | None = None,
) -> Tensor

Divides self by x. Equivalent to self / x. Supports broadcasting to a common shape, type promotion, and integer, float, boolean inputs. div performs true division.

Tensor.manual_seed(42)
t = Tensor.randn(4)
print(t.numpy())
[-0.5144  1.085   0.9089 -0.0841]
print(t.div(3).numpy())
[-0.1715  0.3617  0.303  -0.028 ]
print(Tensor([1, 4, 10]).div(Tensor([2, 3, 4])).numpy())
[0.5    1.3333 2.5   ]

Source code in tinygrad/tensor.py
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
def div(self, x:Tensor|ConstType, reverse=False, rounding_mode:Literal["trunc", "floor"]|None=None) -> Tensor:
  """
  Divides `self` by `x`.
  Equivalent to `self / x`.
  Supports broadcasting to a common shape, type promotion, and integer, float, boolean inputs.
  `div` performs true division.

  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  t = Tensor.randn(4)
  print(t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.div(3).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([1, 4, 10]).div(Tensor([2, 3, 4])).numpy())
  ```
  """
  numerator, denominator = self._broadcasted(x, reverse)
  d = numerator.cast(least_upper_float(numerator.dtype)) * denominator.cast(least_upper_float(denominator.dtype)).reciprocal()
  output_dtype = numerator.dtype if dtypes.is_int(numerator.dtype) else d.dtype
  if dtypes.is_int(dt:=least_upper_dtype(numerator.dtype, denominator.dtype)) and rounding_mode is not None:
    numerator, denominator = numerator.cast(dt), denominator.cast(dt)
    if rounding_mode == "trunc": return numerator.idiv(denominator)
    if rounding_mode == "floor":
      truncate_div, truncate_mod = numerator.idiv(denominator), numerator._apply_broadcasted_uop(UOp.mod, denominator)
      opposite_sign = ((numerator>0)&(denominator<0)) | ((numerator<0)&(denominator>0))
      return (opposite_sign&(truncate_mod!=0)).where(truncate_div-1, truncate_div)
  if rounding_mode == "trunc": return d.trunc().cast(output_dtype)
  if rounding_mode == "floor": return d.floor().cast(output_dtype)
  if rounding_mode is not None: raise RuntimeError(f"{rounding_mode=} is not supported")
  return d

idiv ¤

idiv(x: Self | ConstType, reverse: bool = False)

Divides self by x. Equivalent to self // x. Supports broadcasting to a common shape, type promotion, and integer inputs. idiv performs integer division (truncate towards zero).

print(Tensor([-4, 7, 5, 4, -7, 8]).idiv(Tensor([2, -3, 8, -2, 3, 5])).numpy())
[-2 -2  0 -2 -2  1]
Source code in tinygrad/mixin/math.py
121
122
123
124
125
126
127
128
129
130
131
132
def idiv(self, x: Self | ConstType, reverse: bool = False):
  """
  Divides `self` by `x`.
  Equivalent to `self // x`.
  Supports broadcasting to a common shape, type promotion, and integer inputs.
  `idiv` performs integer division (truncate towards zero).

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-4, 7, 5, 4, -7, 8]).idiv(Tensor([2, -3, 8, -2, 3, 5])).numpy())
  ```
  """
  return self._binop(Ops.IDIV, x, reverse)

mod ¤

mod(x: Tensor | ConstType, reverse=False) -> Tensor

Mod self by x. Equivalent to self % x. Supports broadcasting to a common shape, type promotion, and integer inputs.

print(Tensor([-4, 7, 5, 4, -7, 8]).mod(Tensor([2, -3, 8, -2, 3, 5])).numpy())
[ 0 -2  5  0  2  3]
Source code in tinygrad/tensor.py
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
def mod(self, x:Tensor|ConstType, reverse=False) -> Tensor:
  """
  Mod `self` by `x`.
  Equivalent to `self % x`.
  Supports broadcasting to a common shape, type promotion, and integer inputs.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-4, 7, 5, 4, -7, 8]).mod(Tensor([2, -3, 8, -2, 3, 5])).numpy())
  ```
  """
  a, b = self._broadcasted(x, reverse)
  return a - a.div(b, rounding_mode="floor") * b

bitwise_xor ¤

bitwise_xor(x: Self | ConstType, reverse: bool = False)

Computes bitwise xor of self and x. Equivalent to self ^ x. Supports broadcasting to a common shape, type promotion, and integer, boolean inputs.

print(Tensor([-1, -2, 3]).bitwise_xor(Tensor([1, 0, 3])).numpy())
[-2 -2  0]
print(Tensor([True, True, False, False]).bitwise_xor(Tensor([True, False, True, False])).numpy())
[False  True  True False]

Source code in tinygrad/mixin/math.py
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
def bitwise_xor(self, x: Self | ConstType, reverse: bool = False):
  """
  Computes bitwise xor of `self` and `x`.
  Equivalent to `self ^ x`.
  Supports broadcasting to a common shape, type promotion, and integer, boolean inputs.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-1, -2, 3]).bitwise_xor(Tensor([1, 0, 3])).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([True, True, False, False]).bitwise_xor(Tensor([True, False, True, False])).numpy())
  ```
  """
  self._check_dtype()
  return self._binop(Ops.XOR, x, reverse)

bitwise_and ¤

bitwise_and(x: Self | ConstType, reverse: bool = False)

Computes the bitwise AND of self and x. Equivalent to self & x. Supports broadcasting to a common shape, type promotion, and integer, boolean inputs.

print(Tensor([2, 5, 255]).bitwise_and(Tensor([3, 14, 16])).numpy())
[ 2  4 16]
print(Tensor([True, True, False, False]).bitwise_and(Tensor([True, False, True, False])).numpy())
[ True False False False]

Source code in tinygrad/mixin/math.py
75
76
77
78
79
80
81
82
83
84
85
86
87
88
def bitwise_and(self, x: Self | ConstType, reverse: bool = False):
  """
  Computes the bitwise AND of `self` and `x`.
  Equivalent to `self & x`.
  Supports broadcasting to a common shape, type promotion, and integer, boolean inputs.
  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([2, 5, 255]).bitwise_and(Tensor([3, 14, 16])).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([True, True, False, False]).bitwise_and(Tensor([True, False, True, False])).numpy())
  ```
  """
  self._check_dtype()
  return self._binop(Ops.AND, x, reverse)

bitwise_or ¤

bitwise_or(x: Self | ConstType, reverse: bool = False)

Computes the bitwise OR of self and x. Equivalent to self | x. Supports broadcasting to a common shape, type promotion, and integer, boolean inputs.

print(Tensor([2, 5, 255]).bitwise_or(Tensor([4, 4, 4])).numpy())
[  6   5 255]
print(Tensor([True, True, False, False]).bitwise_or(Tensor([True, False, True, False])).numpy())
[ True  True  True False]

Source code in tinygrad/mixin/math.py
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
def bitwise_or(self, x: Self | ConstType, reverse: bool = False):
  """
  Computes the bitwise OR of `self` and `x`.
  Equivalent to `self | x`.
  Supports broadcasting to a common shape, type promotion, and integer, boolean inputs.
  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([2, 5, 255]).bitwise_or(Tensor([4, 4, 4])).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([True, True, False, False]).bitwise_or(Tensor([True, False, True, False])).numpy())
  ```
  """
  self._check_dtype()
  return self._binop(Ops.OR, x, reverse)

bitwise_not ¤

bitwise_not() -> Tensor

Computes the bitwise NOT of self. Equivalent to ~self.

print(Tensor([0, 2, 5, 255], dtype="int8").bitwise_not().numpy())
[-1 -3 -6  0]
print(Tensor([True, False]).bitwise_not().numpy())
[False  True]

Source code in tinygrad/tensor.py
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
def bitwise_not(self) -> Tensor:
  """
  Computes the bitwise NOT of `self`.
  Equivalent to `~self`.
  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([0, 2, 5, 255], dtype="int8").bitwise_not().numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([True, False]).bitwise_not().numpy())
  ```
  """
  if self.dtype != dtypes.bool and not dtypes.is_int(self.dtype): raise RuntimeError(f"{self.dtype} is not supported")
  return self.logical_not() if self.dtype == dtypes.bool else self ^ -1

lshift ¤

lshift(x: Tensor | int, reverse=False) -> Tensor

Computes left arithmetic shift of self by x bits. self must have unsigned dtype. Equivalent to self << x.

print(Tensor([1, 3, 31], dtype=dtypes.uint8).lshift(2).numpy())
[  4  12 124]
Source code in tinygrad/tensor.py
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
def lshift(self, x:Tensor|int, reverse=False) -> Tensor:
  """
  Computes left arithmetic shift of `self` by `x` bits. `self` must have unsigned dtype.
  Equivalent to `self << x`.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([1, 3, 31], dtype=dtypes.uint8).lshift(2).numpy())
  ```
  """
  assert dtypes.is_unsigned(self.dtype) and isinstance(x, int) and x >= 0 and not reverse, f"not supported {self.dtype=} {x=}"
  return self.mul(2 ** x, reverse)

rshift ¤

rshift(x: Tensor | int, reverse=False) -> Tensor

Computes right arithmetic shift of self by x bits. self must have unsigned dtype. Equivalent to self >> x.

print(Tensor([4, 13, 125], dtype=dtypes.uint8).rshift(2).numpy())
[ 1  3 31]
Source code in tinygrad/tensor.py
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
def rshift(self, x:Tensor|int, reverse=False) -> Tensor:
  """
  Computes right arithmetic shift of `self` by `x` bits. `self` must have unsigned dtype.
  Equivalent to `self >> x`.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([4, 13, 125], dtype=dtypes.uint8).rshift(2).numpy())
  ```
  """
  assert dtypes.is_unsigned(self.dtype) and isinstance(x, int) and x >= 0 and not reverse, f"not supported {self.dtype=} {x=}"
  return self.idiv(2 ** x, reverse)

pow ¤

pow(x: Tensor | ConstType, reverse=False) -> Tensor

Computes power of self with x. Equivalent to self ** x.

print(Tensor([-1, 2, 3]).pow(2.0).numpy())
[1 4 9]
print(Tensor([-1, 2, 3]).pow(Tensor([-1.5, 0.5, 1.5])).numpy())
[-2147483648           1           5]
print((2.0 ** Tensor([-1, 2, 3])).numpy())
[0.5 4.  8. ]

Source code in tinygrad/tensor.py
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
def pow(self, x:Tensor|ConstType, reverse=False) -> Tensor:
  """
  Computes power of `self` with `x`.
  Equivalent to `self ** x`.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-1, 2, 3]).pow(2.0).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-1, 2, 3]).pow(Tensor([-1.5, 0.5, 1.5])).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print((2.0 ** Tensor([-1, 2, 3])).numpy())
  ```
  """
  base, exponent = self._broadcasted(x, reverse=reverse)
  # TODO: int pow
  if not base.is_floating_point() and not (isinstance(x, int) and x >= 0): raise RuntimeError("base needs to be float")

  ret = base._apply_uop(UOp.pow, exponent)
  # NOTE: pow(int, float) -> int
  return ret.round().cast(self.dtype) if not reverse and not dtypes.is_float(self.dtype) and dtypes.is_float(exponent.dtype) else ret

maximum ¤

maximum(x: Tensor | ConstType) -> Tensor

Computes element-wise maximum of self and x.

print(Tensor([-1, 2, 3]).maximum(1).numpy())
[1 2 3]
print(Tensor([-1, 2, 3]).maximum(Tensor([-4, -2, 9])).numpy())
[-1  2  9]

Source code in tinygrad/tensor.py
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
def maximum(self, x:Tensor|ConstType) -> Tensor:
  """
  Computes element-wise maximum of `self` and `x`.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-1, 2, 3]).maximum(1).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-1, 2, 3]).maximum(Tensor([-4, -2, 9])).numpy())
  ```
  """
  return self._apply_broadcasted_uop(UOp.maximum, x)

minimum ¤

minimum(x: Tensor | ConstType) -> Tensor

Computes element-wise minimum of self and x.

print(Tensor([-1, 2, 3]).minimum(1).numpy())
[-1  1  1]
print(Tensor([-1, 2, 3]).minimum(Tensor([-4, -2, 9])).numpy())
[-4 -2  3]

Source code in tinygrad/tensor.py
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
def minimum(self, x:Tensor|ConstType) -> Tensor:
  """
  Computes element-wise minimum of `self` and `x`.

  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-1, 2, 3]).minimum(1).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(Tensor([-1, 2, 3]).minimum(Tensor([-4, -2, 9])).numpy())
  ```
  """
  t, x = self._broadcasted(x)
  return t._inverse().maximum(x._inverse())._inverse()

where ¤

where(
    x: Tensor | ConstType | sint,
    y: Tensor | ConstType | sint,
) -> Tensor

Returns a tensor of elements selected from either x or y, depending on self. output_i = x_i if self_i else y_i.

cond = Tensor([[True, True, False], [True, False, False]])
print(cond.where(1, 3).numpy())
[[1 1 3]
 [1 3 3]]
Tensor.manual_seed(42)
cond = Tensor.randn(2, 3)
print(cond.numpy())
[[ 0.9779  0.4678  0.5526]
 [-0.3288 -0.8555  0.2753]]
print((cond > 0).where(cond, -float("inf")).numpy())
[[0.9779 0.4678 0.5526]
 [  -inf   -inf 0.2753]]

Source code in tinygrad/tensor.py
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
def where(self:Tensor, x:Tensor|ConstType|sint, y:Tensor|ConstType|sint) -> Tensor:
  """
  Returns a tensor of elements selected from either `x` or `y`, depending on `self`.
  `output_i = x_i if self_i else y_i`.

  ```python exec="true" source="above" session="tensor" result="python"
  cond = Tensor([[True, True, False], [True, False, False]])
  print(cond.where(1, 3).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  cond = Tensor.randn(2, 3)
  print(cond.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print((cond > 0).where(cond, -float("inf")).numpy())
  ```
  """
  if isinstance(x, Tensor): x, y = x._broadcasted(y)
  elif isinstance(y, Tensor): y, x = y._broadcasted(x)
  cond, x = self._broadcasted(x, match_dtype=False)
  cond, y = cond._broadcasted(y, match_dtype=False)
  return cond.cast(dtypes.bool)._apply_uop(UOp.where, *x._broadcasted(y))

copysign ¤

copysign(other) -> Tensor

Returns a tensor of with the magnitude of self and the sign of other, elementwise.

Source code in tinygrad/tensor.py
3523
3524
3525
3526
3527
3528
3529
3530
def copysign(self, other) -> Tensor:
  """
  Returns a tensor of with the magnitude of `self` and the sign of `other`, elementwise.
  """
  # NOTE: torch always return in float, we return based on the broadcasting rule.
  other = self._broadcasted(other)[1]
  # TODO: remove other*0?
  return (other < 0).where(-self.abs(), self.abs()) + other*0

logaddexp ¤

logaddexp(other) -> Tensor

Calculates (self.exp()+other.exp()).log(), elementwise.

Source code in tinygrad/tensor.py
3532
3533
3534
3535
3536
3537
def logaddexp(self, other) -> Tensor:
  """
  Calculates (self.exp()+other.exp()).log(), elementwise.
  """
  m = self.maximum(other)
  return ((self-m).exp() + (self._broadcasted(other)[1]-m).exp()).log() + m

Casting Ops¤

cast ¤

cast(dtype: DTypeLike) -> Tensor

Casts self to the given dtype.

t = Tensor([-1, 2.5, 3], dtype=dtypes.float)
print(t.dtype, t.numpy())
dtypes.float [-1.   2.5  3. ]
t = t.cast(dtypes.int32)
print(t.dtype, t.numpy())
dtypes.int [-1  2  3]
t = t.cast(dtypes.uint8)
print(t.dtype, t.numpy())
dtypes.uchar [255   2   3]

Source code in tinygrad/tensor.py
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
def cast(self, dtype:DTypeLike) -> Tensor:
  """
  Casts `self` to the given `dtype`.

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor([-1, 2.5, 3], dtype=dtypes.float)
  print(t.dtype, t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  t = t.cast(dtypes.int32)
  print(t.dtype, t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  t = t.cast(dtypes.uint8)
  print(t.dtype, t.numpy())
  ```
  """
  if (dt:=to_dtype(dtype)) in {dtypes.uint8, dtypes.uint16} and dtypes.is_float(self.dtype):
    # NOTE: values within the int32 range and outside the unsigned dtype range will cause values to wrap around
    return self._apply_uop(UOp.cast, dtype=dtypes.int32)._apply_uop(UOp.cast, dtype=dt)
  return self if self.dtype == dt else self._apply_uop(UOp.cast, dtype=dt)

bitcast ¤

bitcast(dtype: DTypeLike) -> Tensor

Bitcasts self to the given dtype of the same itemsize.

self must not require a gradient.

t = Tensor([-1, 2, 3], dtype=dtypes.int32)
print(t.dtype, t.numpy())
dtypes.int [-1  2  3]
t = t.bitcast(dtypes.uint32)
print(t.dtype, t.numpy())
dtypes.uint [4294967295          2          3]

Source code in tinygrad/tensor.py
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
def bitcast(self, dtype:DTypeLike) -> Tensor:
  """
  Bitcasts `self` to the given `dtype` of the same itemsize.

  `self` must not require a gradient.

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor([-1, 2, 3], dtype=dtypes.int32)
  print(t.dtype, t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  t = t.bitcast(dtypes.uint32)
  print(t.dtype, t.numpy())
  ```
  """
  if self.requires_grad: raise RuntimeError("can't backprop through bitcast")
  dt = to_dtype(dtype)
  if (ns:=dt.itemsize) != (os:=self.dtype.itemsize) and (self.shape[-1]*os) % ns != 0: raise RuntimeError("unsupported size in bitcast")
  if (not isinstance(self.device, str) or not self.device.startswith("DISK")) and ns != os:
    new_uint, old_uint = to_dtype(f"uint{8*ns}"), to_dtype(f"uint{8*os}")
    tmp = self.bitcast(old_uint)
    if ns > os:
      tmp = tmp.reshape(self.shape[:-1] + (self.shape[-1]//(rate := ns//os), rate))
      nones = (None,) * (tmp.ndim - 1)
      return functools.reduce(Tensor.add, (tmp.shrink(nones + ((i, i+1),)).cast(new_uint)<<8*i*os for i in range(rate))).squeeze(-1).bitcast(dtype)
    return Tensor.stack(*(tmp>>8*i*ns for i in range(os//ns)), dim=-1).flatten(-2).cast(new_uint).bitcast(dtype)
  return self._apply_uop(UOp.bitcast, dtype=dt) if self.dtype != dt else self

float ¤

float() -> Tensor

Convenience method to cast self to a float32 Tensor.

t = Tensor([-1, 2, 3], dtype=dtypes.int32)
print(t.dtype, t.numpy())
dtypes.int [-1  2  3]
t = t.float()
print(t.dtype, t.numpy())
dtypes.float [-1.  2.  3.]

Source code in tinygrad/tensor.py
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
def float(self) -> Tensor:
  """
  Convenience method to cast `self` to a `float32` Tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor([-1, 2, 3], dtype=dtypes.int32)
  print(t.dtype, t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  t = t.float()
  print(t.dtype, t.numpy())
  ```
  """
  return self.cast(dtypes.float32)

half ¤

half() -> Tensor

Convenience method to cast self to a float16 Tensor.

t = Tensor([-1, 2, 3], dtype=dtypes.int32)
print(t.dtype, t.numpy())
dtypes.int [-1  2  3]
t = t.half()
print(t.dtype, t.numpy())
dtypes.half [-1.  2.  3.]

Source code in tinygrad/tensor.py
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
def half(self) -> Tensor:
  """
  Convenience method to cast `self` to a `float16` Tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor([-1, 2, 3], dtype=dtypes.int32)
  print(t.dtype, t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  t = t.half()
  print(t.dtype, t.numpy())
  ```
  """
  return self.cast(dtypes.float16)

int ¤

int() -> Tensor

Convenience method to cast self to a int32 Tensor.

t = Tensor([-1.5, -0.5, 0.0, 0.5, 1.5])
print(t.dtype, t.numpy())
dtypes.float [-1.5 -0.5  0.   0.5  1.5]
t = t.int()
print(t.dtype, t.numpy())
dtypes.int [-1  0  0  0  1]

Source code in tinygrad/tensor.py
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
def int(self) -> Tensor:
  """
  Convenience method to cast `self` to a `int32` Tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor([-1.5, -0.5, 0.0, 0.5, 1.5])
  print(t.dtype, t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  t = t.int()
  print(t.dtype, t.numpy())
  ```
  """
  return self.cast(dtypes.int32)

bool ¤

bool() -> Tensor

Convenience method to cast self to a bool Tensor.

t = Tensor([-1, 0, 1])
print(t.dtype, t.numpy())
dtypes.int [-1  0  1]
t = t.bool()
print(t.dtype, t.numpy())
dtypes.bool [ True False  True]

Source code in tinygrad/tensor.py
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
def bool(self) -> Tensor:
  """
  Convenience method to cast `self` to a `bool` Tensor.

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor([-1, 0, 1])
  print(t.dtype, t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  t = t.bool()
  print(t.dtype, t.numpy())
  ```
  """
  return self.cast(dtypes.bool)