Elementwise
Elementwise ops operate on a per element basis. They don't change the shape of the tensor.
Unary Ops (math)¤
logical_not
¤
logical_not() -> Tensor
Computes the logical NOT of the tensor element-wise.
print(Tensor([False, True]).logical_not().numpy())
[ True False]
Source code in tinygrad/tensor.py
2846 2847 2848 2849 2850 2851 2852 2853 2854 |
|
neg
¤
neg() -> Tensor
Negates the tensor element-wise.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).neg().numpy())
[ 3. 2. 1. -0. -1. -2. -3.]
Source code in tinygrad/tensor.py
2856 2857 2858 2859 2860 2861 2862 2863 2864 |
|
log
¤
log() -> Tensor
Computes the natural logarithm element-wise.
See: https://en.wikipedia.org/wiki/Logarithm
print(Tensor([1., 2., 4., 8.]).log().numpy())
[0. 0.6931 1.3863 2.0794]
Source code in tinygrad/tensor.py
2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 |
|
log2
¤
log2() -> Tensor
Computes the base-2 logarithm element-wise.
See: https://en.wikipedia.org/wiki/Logarithm
print(Tensor([1., 2., 4., 8.]).log2().numpy())
[0. 1. 2. 3.]
Source code in tinygrad/tensor.py
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 |
|
exp
¤
exp() -> Tensor
Computes the exponential function element-wise.
See: https://en.wikipedia.org/wiki/Exponential_function
print(Tensor([0., 1., 2., 3.]).exp().numpy())
[ 1. 2.7183 7.3891 20.0855]
Source code in tinygrad/tensor.py
2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 |
|
exp2
¤
exp2() -> Tensor
Computes the base-2 exponential function element-wise.
See: https://en.wikipedia.org/wiki/Exponential_function
print(Tensor([0., 1., 2., 3.]).exp2().numpy())
[1. 2. 4. 8.]
Source code in tinygrad/tensor.py
2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 |
|
sqrt
¤
sqrt() -> Tensor
Computes the square root of the tensor element-wise.
print(Tensor([1., 2., 3., 4.]).sqrt().numpy())
[1. 1.4142 1.7321 2. ]
Source code in tinygrad/tensor.py
2986 2987 2988 2989 2990 2991 2992 2993 2994 |
|
rsqrt
¤
rsqrt() -> Tensor
Computes the reciprocal of the square root of the tensor element-wise.
print(Tensor([1., 2., 3., 4.]).rsqrt().numpy())
[1. 0.7071 0.5774 0.5 ]
Source code in tinygrad/tensor.py
2996 2997 2998 2999 3000 3001 3002 3003 3004 |
|
sin
¤
sin() -> Tensor
Computes the sine of the tensor element-wise.
print(Tensor([0., math.pi/2, math.pi, 3*math.pi/2, 2*math.pi]).sin().numpy())
[ 0. 1. -0. -1. 0.]
Source code in tinygrad/tensor.py
3006 3007 3008 3009 3010 3011 3012 3013 3014 |
|
cos
¤
cos() -> Tensor
Computes the cosine of the tensor element-wise.
print(Tensor([0., math.pi/2, math.pi, 3*math.pi/2, 2*math.pi]).cos().numpy())
[ 1.0000e+00 0.0000e+00 -1.0000e+00 -2.3842e-07 1.0000e+00]
Source code in tinygrad/tensor.py
3016 3017 3018 3019 3020 3021 3022 3023 3024 |
|
tan
¤
tan() -> Tensor
Computes the tangent of the tensor element-wise.
print(Tensor([0., math.pi/4, math.pi/2, 3*math.pi/4, math.pi]).tan().numpy())
[ 0. 1. inf -1. 0.]
Source code in tinygrad/tensor.py
3026 3027 3028 3029 3030 3031 3032 3033 3034 |
|
asin
¤
asin() -> Tensor
Computes the inverse sine (arcsine) of the tensor element-wise.
print(Tensor([-0.9, -0.6, -0.3, 0., 0.3, 0.6, 0.9]).asin().numpy())
[-1.1198 -0.6435 -0.3047 0. 0.3047 0.6435 1.1198]
Source code in tinygrad/tensor.py
3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 |
|
acos
¤
acos() -> Tensor
Computes the inverse cosine (arccosine) of the tensor element-wise.
print(Tensor([-0.9, -0.6, -0.3, 0., 0.3, 0.6, 0.9]).acos().numpy())
[2.6906 2.2143 1.8755 1.5708 1.2661 0.9273 0.451 ]
Source code in tinygrad/tensor.py
3049 3050 3051 3052 3053 3054 3055 3056 3057 |
|
atan
¤
atan() -> Tensor
Computes the inverse tangent (arctan) of the tensor element-wise.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).atan().numpy())
[-1.249 -1.1071 -0.7854 0. 0.7854 1.1071 1.249 ]
Source code in tinygrad/tensor.py
3059 3060 3061 3062 3063 3064 3065 3066 3067 |
|
trunc
¤
trunc() -> Tensor
Truncates the tensor element-wise.
print(Tensor([-3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5]).trunc().numpy())
[-3. -2. -1. 0. 0. 1. 2. 3.]
Source code in tinygrad/tensor.py
3071 3072 3073 3074 3075 3076 3077 3078 3079 |
|
ceil
¤
ceil() -> Tensor
Rounds the tensor element-wise towards positive infinity.
print(Tensor([-3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5]).ceil().numpy())
[-3. -2. -1. 0. 1. 2. 3. 4.]
Source code in tinygrad/tensor.py
3081 3082 3083 3084 3085 3086 3087 3088 3089 |
|
floor
¤
floor() -> Tensor
Rounds the tensor element-wise towards negative infinity.
print(Tensor([-3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5]).floor().numpy())
[-4. -3. -2. -1. 0. 1. 2. 3.]
Source code in tinygrad/tensor.py
3091 3092 3093 3094 3095 3096 3097 3098 3099 |
|
round
¤
round() -> Tensor
Rounds the tensor element-wise with rounding half to even.
print(Tensor([-3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5]).round().numpy())
[-4. -2. -2. 0. 0. 2. 2. 4.]
Source code in tinygrad/tensor.py
3101 3102 3103 3104 3105 3106 3107 3108 3109 |
|
isinf
¤
Checks the tensor element-wise to return True where the element is infinity, otherwise returns False
print(Tensor([1, float('inf'), 2, float('-inf'), float('nan')]).isinf().numpy())
[False True False True False]
Source code in tinygrad/tensor.py
3111 3112 3113 3114 3115 3116 3117 3118 3119 |
|
isnan
¤
isnan() -> Tensor
Checks the tensor element-wise to return True where the element is NaN, otherwise returns False
print(Tensor([1, float('inf'), 2, float('-inf'), float('nan')]).isnan().numpy())
[False False False False True]
Source code in tinygrad/tensor.py
3121 3122 3123 3124 3125 3126 3127 3128 3129 |
|
isfinite
¤
isfinite() -> Tensor
Checks the tensor element-wise to return True where the element is finite, otherwise returns False
print(Tensor([1, float('inf'), 2, float('-inf'), float('nan')]).isfinite().numpy())
[ True False True False False]
Source code in tinygrad/tensor.py
3131 3132 3133 3134 3135 3136 3137 3138 3139 |
|
lerp
¤
Linearly interpolates between self
and end
by weight
.
print(Tensor([1., 2., 3.]).lerp(Tensor([4., 5., 6.]), 0.5).numpy())
[2.5 3.5 4.5]
Source code in tinygrad/tensor.py
3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 |
|
square
¤
square() -> Tensor
Squares the tensor element-wise.
Equivalent to self*self
.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).square().numpy())
[9. 4. 1. 0. 1. 4. 9.]
Source code in tinygrad/tensor.py
3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 |
|
clamp
¤
clamp(min_=None, max_=None) -> Tensor
Clips (clamps) the values in the tensor between min_
and max_
element-wise.
If min_
is None
, there is no lower bound. If max_
is None, there is no upper bound.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).clip(-1, 1).numpy())
[-1. -1. -1. 0. 1. 1. 1.]
Source code in tinygrad/tensor.py
3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 |
|
clip
¤
clip(min_=None, max_=None) -> Tensor
Alias for Tensor.clamp
.
Source code in tinygrad/tensor.py
3178 3179 3180 3181 3182 |
|
sign
¤
sign() -> Tensor
Returns the sign of the tensor element-wise.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).sign().numpy())
[-1. -1. -1. 0. 1. 1. 1.]
Source code in tinygrad/tensor.py
3184 3185 3186 3187 3188 3189 3190 3191 3192 |
|
abs
¤
abs() -> Tensor
Computes the absolute value of the tensor element-wise.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).abs().numpy())
[3. 2. 1. 0. 1. 2. 3.]
Source code in tinygrad/tensor.py
3194 3195 3196 3197 3198 3199 3200 3201 3202 |
|
reciprocal
¤
reciprocal() -> Tensor
Computes 1/x
element-wise.
print(Tensor([1., 2., 3., 4.]).reciprocal().numpy())
[1. 0.5 0.3333 0.25 ]
Source code in tinygrad/tensor.py
3204 3205 3206 3207 3208 3209 3210 3211 3212 |
|
Unary Ops (activation)¤
relu
¤
relu() -> Tensor
Applies the Rectified Linear Unit (ReLU) function element-wise.
- Described: https://paperswithcode.com/method/relu
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).relu().numpy())
[0. 0. 0. 0. 1. 2. 3.]
Source code in tinygrad/tensor.py
2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 |
|
sigmoid
¤
sigmoid() -> Tensor
Applies the Sigmoid function element-wise.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).sigmoid().numpy())
[0.0474 0.1192 0.2689 0.5 0.7311 0.8808 0.9526]
Source code in tinygrad/tensor.py
2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 |
|
logsigmoid
¤
logsigmoid() -> Tensor
Applies the LogSigmoid function element-wise.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).logsigmoid().numpy())
[-3.0486 -2.1269 -1.3133 -0.6931 -0.3133 -0.1269 -0.0486]
Source code in tinygrad/tensor.py
2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 |
|
hardsigmoid
¤
Applies the Hardsigmoid function element-wise.
NOTE: default alpha
and beta
values are taken from torch
- Described: https://paperswithcode.com/method/hard-sigmoid
- See: https://pytorch.org/docs/stable/generated/torch.nn.functional.hardsigmoid.html
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).hardsigmoid().numpy())
[0. 0.1667 0.3333 0.5 0.6667 0.8333 1. ]
Source code in tinygrad/tensor.py
2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 |
|
elu
¤
elu(alpha=1.0) -> Tensor
Applies the Exponential Linear Unit (ELU) function element-wise.
- Described: https://paperswithcode.com/method/elu
- Paper: https://arxiv.org/abs/1511.07289v5
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).elu().numpy())
[-0.9502 -0.8647 -0.6321 0. 1. 2. 3. ]
Source code in tinygrad/tensor.py
3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 |
|
celu
¤
celu(alpha=1.0) -> Tensor
Applies the Continuously differentiable Exponential Linear Unit (CELU) function element-wise.
- Described: https://paperswithcode.com/method/celu
- Paper: https://arxiv.org/abs/1704.07483
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).celu().numpy())
[-0.9502 -0.8647 -0.6321 0. 1. 2. 3. ]
Source code in tinygrad/tensor.py
3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 |
|
selu
¤
selu(alpha=1.67326, gamma=1.0507) -> Tensor
Applies the Scaled Exponential Linear Unit (SELU) function element-wise.
- Described: https://paperswithcode.com/method/selu
- Paper: https://arxiv.org/abs/1706.02515v5
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).selu().numpy())
[-1.6706 -1.5202 -1.1113 0. 1.0507 2.1014 3.1521]
Source code in tinygrad/tensor.py
3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 |
|
swish
¤
swish() -> Tensor
See .silu()
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).swish().numpy())
[-0.1423 -0.2384 -0.2689 0. 0.7311 1.7616 2.8577]
Source code in tinygrad/tensor.py
3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 |
|
silu
¤
silu() -> Tensor
Applies the Sigmoid Linear Unit (SiLU) function element-wise.
- Described: https://paperswithcode.com/method/silu
- Paper: https://arxiv.org/abs/1606.08415
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).silu().numpy())
[-0.1423 -0.2384 -0.2689 0. 0.7311 1.7616 2.8577]
Source code in tinygrad/tensor.py
3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 |
|
relu6
¤
relu6() -> Tensor
Applies the ReLU6 function element-wise.
- Described: https://paperswithcode.com/method/relu6
- Paper: https://arxiv.org/abs/1704.04861v1
print(Tensor([-9., -6., -3., 0., 3., 6., 9.]).relu6().numpy())
[0. 0. 0. 0. 3. 6. 6.]
Source code in tinygrad/tensor.py
3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 |
|
hardswish
¤
hardswish() -> Tensor
Applies the Hardswish function element-wise.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).hardswish().numpy())
[-0. -0.3333 -0.3333 0. 0.6667 1.6667 3. ]
Source code in tinygrad/tensor.py
3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 |
|
tanh
¤
tanh() -> Tensor
Applies the Hyperbolic Tangent (tanh) function element-wise.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).tanh().numpy())
[-0.9951 -0.964 -0.7616 0. 0.7616 0.964 0.9951]
Source code in tinygrad/tensor.py
3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 |
|
sinh
¤
sinh() -> Tensor
Applies the Hyperbolic Sine (sinh) function element-wise.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).sinh().numpy())
[-10.0179 -3.6269 -1.1752 0. 1.1752 3.6269 10.0179]
Source code in tinygrad/tensor.py
3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 |
|
cosh
¤
cosh() -> Tensor
Applies the Hyperbolic Cosine (cosh) function element-wise.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).cosh().numpy())
[10.0677 3.7622 1.5431 1. 1.5431 3.7622 10.0677]
Source code in tinygrad/tensor.py
3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 |
|
atanh
¤
atanh() -> Tensor
Applies the Inverse Hyperbolic Tangent (atanh) function element-wise.
print(Tensor([-0.9, -0.6, -0.3, 0., 0.3, 0.6, 0.9]).atanh().numpy())
[-1.4722 -0.6931 -0.3095 0. 0.3095 0.6931 1.4722]
Source code in tinygrad/tensor.py
3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 |
|
asinh
¤
asinh() -> Tensor
Applies the Inverse Hyperbolic Sine (asinh) function element-wise.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).asinh().numpy())
[-1.8184 -1.4436 -0.8814 0. 0.8814 1.4436 1.8184]
Source code in tinygrad/tensor.py
3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 |
|
acosh
¤
acosh() -> Tensor
Applies the Inverse Hyperbolic Cosine (acosh) function element-wise.
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).acosh().numpy())
[ nan nan nan nan 0. 1.317 1.7627]
Source code in tinygrad/tensor.py
3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 |
|
hardtanh
¤
hardtanh(min_val=-1, max_val=1) -> Tensor
Applies the Hardtanh function element-wise.
print(Tensor([-1.5, -1.0, -0.5, 0., 0.5, 1.0, 1.5]).hardtanh().numpy())
[-1. -1. -0.5 0. 0.5 1. 1. ]
Source code in tinygrad/tensor.py
3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 |
|
erf
¤
erf() -> Tensor
Applies error function element-wise.
- Described: https://en.wikipedia.org/wiki/Error_function
print(Tensor([-1.5, -1.0, -0.5, 0., 0.5, 1.0, 1.5]).erf().numpy())
[-0.9661 -0.8427 -0.5205 0. 0.5205 0.8427 0.9661]
Source code in tinygrad/tensor.py
3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 |
|
gelu
¤
gelu() -> Tensor
Applies the Gaussian Error Linear Unit (GELU) function element-wise.
- Described: https://paperswithcode.com/method/gelu
- Paper: https://arxiv.org/abs/1606.08415v5
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).gelu().numpy())
[-0.0036 -0.0454 -0.1588 0. 0.8412 1.9546 2.9964]
Source code in tinygrad/tensor.py
3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 |
|
quick_gelu
¤
quick_gelu() -> Tensor
Applies the Sigmoid GELU approximation element-wise.
- Described: https://paperswithcode.com/method/gelu
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).quick_gelu().numpy())
[-0.0181 -0.0643 -0.1542 0. 0.8458 1.9357 2.9819]
Source code in tinygrad/tensor.py
3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 |
|
leaky_relu
¤
leaky_relu(neg_slope=0.01) -> Tensor
Applies the Leaky ReLU function element-wise.
- Described: https://paperswithcode.com/method/leaky-relu
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).leaky_relu().numpy())
[-0.03 -0.02 -0.01 0. 1. 2. 3. ]
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).leaky_relu(neg_slope=0.42).numpy())
[-1.26 -0.84 -0.42 0. 1. 2. 3. ]
Source code in tinygrad/tensor.py
3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 |
|
mish
¤
mish() -> Tensor
Applies the Mish function element-wise.
- Described: https://paperswithcode.com/method/mish
- Paper: https://arxiv.org/abs/1908.08681v3
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).mish().numpy())
[-0.1456 -0.2525 -0.3034 0. 0.8651 1.944 2.9865]
Source code in tinygrad/tensor.py
3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 |
|
softplus
¤
softplus(beta=1) -> Tensor
Applies the Softplus function element-wise.
- Described: https://paperswithcode.com/method/softplus
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).softplus().numpy())
[0.0486 0.1269 0.3133 0.6931 1.3133 2.1269 3.0486]
Source code in tinygrad/tensor.py
3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 |
|
softsign
¤
softsign() -> Tensor
Applies the Softsign function element-wise.
- Described: https://paperswithcode.com/method/softsign
print(Tensor([-3., -2., -1., 0., 1., 2., 3.]).softsign().numpy())
[-0.75 -0.6667 -0.5 0. 0.5 0.6667 0.75 ]
Source code in tinygrad/tensor.py
3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 |
|
Elementwise Ops (broadcasted)¤
add
¤
add(x, reverse=False)
Adds self
and x
.
Equivalent to self + x
.
Supports broadcasting to a common shape, type promotion, and integer, float, boolean inputs.
Tensor.manual_seed(42)
t = Tensor.randn(4)
print(t.numpy())
[-0.5144 1.085 0.9089 -0.0841]
print(t.add(20).numpy())
[19.4856 21.085 20.9089 19.9159]
print(t.add(Tensor([[2.0], [3.5]])).numpy())
[[1.4856 3.085 2.9089 1.9159]
[2.9856 4.585 4.4089 3.4159]]
Source code in tinygrad/uop/mathtraits.py
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
|
sub
¤
Subtracts x
from self
.
Equivalent to self - x
.
Supports broadcasting to a common shape, type promotion, and integer, float, boolean inputs.
Tensor.manual_seed(42)
t = Tensor.randn(4)
print(t.numpy())
[-0.5144 1.085 0.9089 -0.0841]
print(t.sub(20).numpy())
[-20.5144 -18.915 -19.0911 -20.0841]
print(t.sub(Tensor([[2.0], [3.5]])).numpy())
[[-2.5144 -0.915 -1.0911 -2.0841]
[-4.0144 -2.415 -2.5911 -3.5841]]
Source code in tinygrad/tensor.py
3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 |
|
mul
¤
mul(x, reverse=False)
Multiplies self
and x
.
Equivalent to self * x
.
Supports broadcasting to a common shape, type promotion, and integer, float, boolean inputs.
Tensor.manual_seed(42)
t = Tensor.randn(4)
print(t.numpy())
[-0.5144 1.085 0.9089 -0.0841]
print(t.mul(3).numpy())
[-1.5431 3.2549 2.7267 -0.2523]
print(t.mul(Tensor([[-1.0], [2.0]])).numpy())
[[ 0.5144 -1.085 -0.9089 0.0841]
[-1.0287 2.17 1.8178 -0.1682]]
Source code in tinygrad/uop/mathtraits.py
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
|
div
¤
div(
x: Tensor | ConstType,
reverse=False,
rounding_mode: Literal["trunc", "floor"] | None = None,
) -> Tensor
Divides self
by x
.
Equivalent to self / x
.
Supports broadcasting to a common shape, type promotion, and integer, float, boolean inputs.
div
performs true division.
Tensor.manual_seed(42)
t = Tensor.randn(4)
print(t.numpy())
[-0.5144 1.085 0.9089 -0.0841]
print(t.div(3).numpy())
[-0.1715 0.3617 0.303 -0.028 ]
print(Tensor([1, 4, 10]).div(Tensor([2, 3, 4])).numpy())
[0.5 1.3333 2.5 ]
Source code in tinygrad/tensor.py
3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 |
|
idiv
¤
idiv(x, reverse=False)
Divides self
by x
.
Equivalent to self // x
.
Supports broadcasting to a common shape, type promotion, and integer inputs.
idiv
performs integer division (truncate towards zero).
print(Tensor([-4, 7, 5, 4, -7, 8]).idiv(Tensor([2, -3, 8, -2, 3, 5])).numpy())
[-2 -2 0 -2 -2 1]
Source code in tinygrad/uop/mathtraits.py
101 102 103 104 105 106 107 108 109 110 111 112 |
|
mod
¤
Mod self
by x
.
Equivalent to self % x
.
Supports broadcasting to a common shape, type promotion, and integer inputs.
print(Tensor([-4, 7, 5, 4, -7, 8]).mod(Tensor([2, -3, 8, -2, 3, 5])).numpy())
[ 0 -2 5 0 2 3]
Source code in tinygrad/tensor.py
3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 |
|
bitwise_xor
¤
bitwise_xor(x, reverse=False)
Computes bitwise xor of self
and x
.
Equivalent to self ^ x
.
Supports broadcasting to a common shape, type promotion, and integer, boolean inputs.
print(Tensor([-1, -2, 3]).bitwise_xor(Tensor([1, 0, 3])).numpy())
[-2 -2 0]
print(Tensor([True, True, False, False]).bitwise_xor(Tensor([True, False, True, False])).numpy())
[False True True False]
Source code in tinygrad/uop/mathtraits.py
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
|
bitwise_and
¤
bitwise_and(x, reverse=False)
Computes the bitwise AND of self
and x
.
Equivalent to self & x
.
Supports broadcasting to a common shape, type promotion, and integer, boolean inputs.
print(Tensor([2, 5, 255]).bitwise_and(Tensor([3, 14, 16])).numpy())
[ 2 4 16]
print(Tensor([True, True, False, False]).bitwise_and(Tensor([True, False, True, False])).numpy())
[ True False False False]
Source code in tinygrad/uop/mathtraits.py
58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
|
bitwise_or
¤
bitwise_or(x, reverse=False)
Computes the bitwise OR of self
and x
.
Equivalent to self | x
.
Supports broadcasting to a common shape, type promotion, and integer, boolean inputs.
print(Tensor([2, 5, 255]).bitwise_or(Tensor([4, 4, 4])).numpy())
[ 6 5 255]
print(Tensor([True, True, False, False]).bitwise_or(Tensor([True, False, True, False])).numpy())
[ True True True False]
Source code in tinygrad/uop/mathtraits.py
72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
|
bitwise_not
¤
bitwise_not() -> Tensor
Computes the bitwise NOT of self
.
Equivalent to ~self
.
print(Tensor([0, 2, 5, 255], dtype="int8").bitwise_not().numpy())
[-1 -3 -6 0]
print(Tensor([True, False]).bitwise_not().numpy())
[False True]
Source code in tinygrad/tensor.py
3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 |
|
lshift
¤
Computes left arithmetic shift of self
by x
bits. self
must have unsigned dtype.
Equivalent to self << x
.
print(Tensor([1, 3, 31], dtype=dtypes.uint8).lshift(2).numpy())
[ 4 12 124]
Source code in tinygrad/tensor.py
3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 |
|
rshift
¤
Computes right arithmetic shift of self
by x
bits. self
must have unsigned dtype.
Equivalent to self >> x
.
print(Tensor([4, 13, 125], dtype=dtypes.uint8).rshift(2).numpy())
[ 1 3 31]
Source code in tinygrad/tensor.py
3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 |
|
pow
¤
Computes power of self
with x
.
Equivalent to self ** x
.
print(Tensor([-1, 2, 3]).pow(2.0).numpy())
[1 4 9]
print(Tensor([-1, 2, 3]).pow(Tensor([-1.5, 0.5, 1.5])).numpy())
[-2147483648 1 5]
print((2.0 ** Tensor([-1, 2, 3])).numpy())
[0.5 4. 8. ]
Source code in tinygrad/tensor.py
3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 |
|
maximum
¤
Computes element-wise maximum of self
and x
.
print(Tensor([-1, 2, 3]).maximum(1).numpy())
[1 2 3]
print(Tensor([-1, 2, 3]).maximum(Tensor([-4, -2, 9])).numpy())
[-1 2 9]
Source code in tinygrad/tensor.py
3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 |
|
minimum
¤
Computes element-wise minimum of self
and x
.
print(Tensor([-1, 2, 3]).minimum(1).numpy())
[-1 1 1]
print(Tensor([-1, 2, 3]).minimum(Tensor([-4, -2, 9])).numpy())
[-4 -2 3]
Source code in tinygrad/tensor.py
3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 |
|
where
¤
Returns a tensor of elements selected from either x
or y
, depending on self
.
output_i = x_i if self_i else y_i
.
cond = Tensor([[True, True, False], [True, False, False]])
print(cond.where(1, 3).numpy())
[[1 1 3]
[1 3 3]]
Tensor.manual_seed(42)
cond = Tensor.randn(2, 3)
print(cond.numpy())
[[ 0.9779 0.4678 0.5526]
[-0.3288 -0.8555 0.2753]]
print((cond > 0).where(cond, -float("inf")).numpy())
[[0.9779 0.4678 0.5526]
[ -inf -inf 0.2753]]
Source code in tinygrad/tensor.py
3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 |
|
copysign
¤
copysign(other) -> Tensor
Returns a tensor of with the magnitude of self
and the sign of other
, elementwise.
Source code in tinygrad/tensor.py
3691 3692 3693 3694 3695 3696 3697 3698 |
|
Casting Ops¤
cast
¤
cast(dtype: DTypeLike) -> Tensor
Casts self
to the given dtype
.
t = Tensor([-1, 2.5, 3], dtype=dtypes.float)
print(t.dtype, t.numpy())
dtypes.float [-1. 2.5 3. ]
t = t.cast(dtypes.int32)
print(t.dtype, t.numpy())
dtypes.int [-1 2 3]
t = t.cast(dtypes.uint8)
print(t.dtype, t.numpy())
dtypes.uchar [255 2 3]
Source code in tinygrad/tensor.py
4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 |
|
bitcast
¤
bitcast(dtype: DTypeLike) -> Tensor
Bitcasts self
to the given dtype
of the same itemsize.
self
must not require a gradient.
t = Tensor([-1, 2, 3], dtype=dtypes.int32)
print(t.dtype, t.numpy())
dtypes.int [-1 2 3]
t = t.bitcast(dtypes.uint32)
print(t.dtype, t.numpy())
dtypes.uint [4294967295 2 3]
Source code in tinygrad/tensor.py
4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 |
|
float
¤
float() -> Tensor
Convenience method to cast self
to a float32
Tensor.
t = Tensor([-1, 2, 3], dtype=dtypes.int32)
print(t.dtype, t.numpy())
dtypes.int [-1 2 3]
t = t.float()
print(t.dtype, t.numpy())
dtypes.float [-1. 2. 3.]
Source code in tinygrad/tensor.py
4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 |
|
half
¤
half() -> Tensor
Convenience method to cast self
to a float16
Tensor.
t = Tensor([-1, 2, 3], dtype=dtypes.int32)
print(t.dtype, t.numpy())
dtypes.int [-1 2 3]
t = t.half()
print(t.dtype, t.numpy())
dtypes.half [-1. 2. 3.]
Source code in tinygrad/tensor.py
4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 |
|
int
¤
int() -> Tensor
Convenience method to cast self
to a int32
Tensor.
t = Tensor([-1.5, -0.5, 0.0, 0.5, 1.5])
print(t.dtype, t.numpy())
dtypes.float [-1.5 -0.5 0. 0.5 1.5]
t = t.int()
print(t.dtype, t.numpy())
dtypes.int [-1 0 0 0 1]
Source code in tinygrad/tensor.py
4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 |
|
bool
¤
bool() -> Tensor
Convenience method to cast self
to a bool
Tensor.
t = Tensor([-1, 0, 1])
print(t.dtype, t.numpy())
dtypes.int [-1 0 1]
t = t.bool()
print(t.dtype, t.numpy())
dtypes.bool [ True False True]
Source code in tinygrad/tensor.py
4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 |
|