Movement
Movement (low level)¤
view
¤
view(shape, *args) -> Self
.view is an alias for .reshape.
Source code in tinygrad/mixin/movement.py
161 162 163 | |
reshape
¤
reshape(shape, *args) -> Self
Returns a tensor with the same data as the original tensor but with a different shape.
shape can be passed as a tuple or as separate arguments.
t = Tensor.arange(6)
print(t.reshape(2, 3).numpy())
[[0 1 2]
[3 4 5]]
Source code in tinygrad/mixin/movement.py
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 | |
expand
¤
expand(shape, *args) -> Self
Returns a tensor that is expanded to the shape that is specified. Expand can also increase the number of dimensions that a tensor has.
Passing a -1 or None to a dimension means that its size will not be changed.
t = Tensor([1, 2, 3])
print(t.expand(4, -1).numpy())
[[1 2 3]
[1 2 3]
[1 2 3]
[1 2 3]]
Source code in tinygrad/mixin/movement.py
61 62 63 64 65 66 67 68 69 70 71 72 73 74 | |
permute
¤
permute(order, *args) -> Self
Returns a tensor that is a permutation of the original tensor.
The new tensor has the same data as the original tensor but with the dimensions permuted according to the order specified.
order can be passed as a tuple or as separate arguments.
t = Tensor.empty(2, 3, 5)
print(t.shape)
(2, 3, 5)
print(t.permute(2, 0, 1).shape)
(5, 2, 3)
Source code in tinygrad/mixin/movement.py
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 | |
flip
¤
flip(axis, *args) -> Self
Returns a tensor that reverses the order of the original tensor along given axis.
axis can be passed as a tuple or as separate arguments.
t = Tensor.arange(6).reshape(2, 3)
print(t.numpy())
[[0 1 2]
[3 4 5]]
print(t.flip(0).numpy())
[[3 4 5]
[0 1 2]]
print(t.flip((0, 1)).numpy())
[[5 4 3]
[2 1 0]]
Source code in tinygrad/mixin/movement.py
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 | |
shrink
¤
Returns a tensor that shrinks the each axis based on input arg.
arg must have the same length as self.ndim.
For each axis, it can be None, which means no shrink, or a tuple (start, end) that works the same as Python slice.
t = Tensor.arange(9).reshape(3, 3)
print(t.numpy())
[[0 1 2]
[3 4 5]
[6 7 8]]
print(t.shrink(((None, (1, 3)))).numpy())
[[1 2]
[4 5]
[7 8]]
print(t.shrink((((0, 2), (0, 2)))).numpy())
[[0 1]
[3 4]]
Source code in tinygrad/mixin/movement.py
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 | |
pad
¤
pad(
padding: (
Sequence[sint] | Sequence[tuple[sint, sint] | None]
),
mode: str = "constant",
value: float = 0.0,
) -> Tensor
Returns a tensor with padding applied based on the input padding.
padding supports two padding structures:
-
Flat padding:
(padding_left, padding_right, padding_top, padding_bottom, ...)- This structure matches PyTorch's pad.
paddinglength must be even.
-
Group padding:
(..., (padding_top, padding_bottom), (padding_left, padding_right))- This structure matches pad for JAX, NumPy, TensorFlow, and others.
- For each axis, padding can be
None, meaning no padding, or a tuple(start, end). paddingmust have the same length asself.ndim.
Padding values can be negative, resulting in dimension shrinks that work similarly to Python negative slices.
Padding modes is selected with mode which supports constant, reflect and replicate.
t = Tensor.arange(9).reshape(1, 1, 3, 3)
print(t.numpy())
[[[[0 1 2]
[3 4 5]
[6 7 8]]]]
print(t.pad((1, 2, 0, -1)).numpy())
[[[[0 0 1 2 0 0]
[0 3 4 5 0 0]]]]
print(t.pad(((None, None, (0, -1), (1, 2)))).numpy())
[[[[0 0 1 2 0 0]
[0 3 4 5 0 0]]]]
print(t.pad((1, 2, 0, -1), value=-float('inf')).numpy())
[[[[-inf 0. 1. 2. -inf -inf]
[-inf 3. 4. 5. -inf -inf]]]]
Source code in tinygrad/tensor.py
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 | |
Movement (high level)¤
__getitem__
¤
__getitem__(indices) -> Tensor
Retrieves a sub-tensor using indexing.
Supported Index Types: int | slice | Tensor | None | list | tuple | Ellipsis
Examples:
t = Tensor.arange(12).reshape(3, 4)
print(t.numpy())
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
-
Int Indexing: Select an element or sub-tensor using integers for each dimension.
print(t[1, 2].numpy())6 -
Slice Indexing: Select a range of elements using slice notation (
start:end:stride).print(t[0:2, ::2].numpy())[[0 2] [4 6]] -
Tensor Indexing: Use another tensor as indices for advanced indexing. Using
tupleorlisthere also works.print(t[Tensor([2, 0, 1]), Tensor([1, 2, 3])].numpy())[9 2 7] -
NoneIndexing: Add a new dimension to the tensor.print(t[:, None].shape)(3, 1, 4)
Note
Out-of-bounds indexing results in a value of 0.
t = Tensor([1, 2, 3])
print(t[Tensor([4, 3, 2])].numpy())
[0 0 3]
Source code in tinygrad/tensor.py
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 | |
gather
¤
Gathers values along an axis specified by dim.
t = Tensor([[1, 2], [3, 4]])
print(t.numpy())
[[1 2]
[3 4]]
print(t.gather(1, Tensor([[0, 0], [1, 0]])).numpy())
[[1 1]
[4 3]]
Source code in tinygrad/tensor.py
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 | |
cat
¤
Concatenates self with other Tensor in args along an axis specified by dim.
All tensors must have the same shape except in the concatenating dimension.
t0, t1, t2 = Tensor([[1, 2]]), Tensor([[3, 4]]), Tensor([[5, 6]])
print(t0.cat(t1, t2, dim=0).numpy())
[[1 2]
[3 4]
[5 6]]
print(t0.cat(t1, t2, dim=1).numpy())
[[1 2 3 4 5 6]]
Source code in tinygrad/tensor.py
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 | |
stack
¤
Concatenates self with other Tensor in args along a new dimension specified by dim.
t0, t1, t2 = Tensor([1, 2]), Tensor([3, 4]), Tensor([5, 6])
print(t0.stack(t1, t2, dim=0).numpy())
[[1 2]
[3 4]
[5 6]]
print(t0.stack(t1, t2, dim=1).numpy())
[[1 3 5]
[2 4 6]]
Source code in tinygrad/tensor.py
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 | |
repeat
¤
repeat(repeats, *args) -> Self
Repeats tensor number of times along each dimension specified by repeats.
repeats can be passed as a tuple or as separate arguments.
t = Tensor([1, 2, 3])
print(t.repeat(4, 2).numpy())
[[1 2 3 1 2 3]
[1 2 3 1 2 3]
[1 2 3 1 2 3]
[1 2 3 1 2 3]]
print(t.repeat(4, 2, 1).shape)
(4, 2, 3)
Source code in tinygrad/mixin/movement.py
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 | |
repeat_interleave
¤
Repeats elements of a tensor.
t = Tensor([1, 2, 3])
print(t.repeat_interleave(2).numpy())
[1 1 2 2 3 3]
Source code in tinygrad/mixin/movement.py
297 298 299 300 301 302 303 304 305 306 307 308 | |
split
¤
Splits the tensor into chunks along the dimension specified by dim.
If sizes is an integer, it splits into equally sized chunks if possible, otherwise the last chunk will be smaller.
If sizes is a list, it splits into len(sizes) chunks with size in dim according to size.
t = Tensor.arange(10).reshape(5, 2)
print(t.numpy())
[[0 1]
[2 3]
[4 5]
[6 7]
[8 9]]
split = t.split(2)
print("\n".join([repr(x.numpy()) for x in split]))
array([[0, 1],
[2, 3]], dtype=int32)
array([[4, 5],
[6, 7]], dtype=int32)
array([[8, 9]], dtype=int32)
split = t.split([1, 4])
print("\n".join([repr(x.numpy()) for x in split]))
array([[0, 1]], dtype=int32)
array([[2, 3],
[4, 5],
[6, 7],
[8, 9]], dtype=int32)
Source code in tinygrad/tensor.py
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 | |
chunk
¤
Splits the tensor into chunks number of chunks along the dimension dim.
If the tensor size along dim is not divisible by chunks, all returned chunks will be the same size except the last one.
The function may return fewer than the specified number of chunks.
chunked = Tensor.arange(11).chunk(6)
print("\n".join([repr(x.numpy()) for x in chunked]))
array([0, 1], dtype=int32)
array([2, 3], dtype=int32)
array([4, 5], dtype=int32)
array([6, 7], dtype=int32)
array([8, 9], dtype=int32)
array([10], dtype=int32)
chunked = Tensor.arange(12).chunk(6)
print("\n".join([repr(x.numpy()) for x in chunked]))
array([0, 1], dtype=int32)
array([2, 3], dtype=int32)
array([4, 5], dtype=int32)
array([6, 7], dtype=int32)
array([8, 9], dtype=int32)
array([10, 11], dtype=int32)
chunked = Tensor.arange(13).chunk(6)
print("\n".join([repr(x.numpy()) for x in chunked]))
array([0, 1, 2], dtype=int32)
array([3, 4, 5], dtype=int32)
array([6, 7, 8], dtype=int32)
array([ 9, 10, 11], dtype=int32)
array([12], dtype=int32)
Source code in tinygrad/tensor.py
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 | |
unfold
¤
Unfolds the tensor along dimension dim into overlapping windows.
Each window has length size and begins every step elements of self.
Returns the input tensor with dimension dim replaced by dims (n_windows, size)
where n_windows = (self.shape[dim] - size) // step + 1.
unfolded = Tensor.arange(8).unfold(0,2,2)
print("\n".join([repr(x.numpy()) for x in unfolded]))
array([0, 1], dtype=int32)
array([2, 3], dtype=int32)
array([4, 5], dtype=int32)
array([6, 7], dtype=int32)
unfolded = Tensor.arange(27).reshape(3,3,3).unfold(-1,2,3)
print("\n".join([repr(x.numpy()) for x in unfolded]))
array([[[0, 1]],
[[3, 4]],
[[6, 7]]], dtype=int32)
array([[[ 9, 10]],
[[12, 13]],
[[15, 16]]], dtype=int32)
array([[[18, 19]],
[[21, 22]],
[[24, 25]]], dtype=int32)
Source code in tinygrad/tensor.py
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 | |
meshgrid
¤
Generates coordinate matrices from coordinate vectors. Input tensors can be scalars or 1D tensors.
indexing determines how the output grids are aligned.
ij indexing follows matrix-style indexing and xy indexing follows Cartesian-style indexing.
x, y = Tensor([1, 2, 3]), Tensor([4, 5, 6])
grid_x, grid_y = x.meshgrid(y)
print(grid_x.numpy())
print(grid_y.numpy())
[[1 1 1]
[2 2 2]
[3 3 3]]
[[4 5 6]
[4 5 6]
[4 5 6]]
grid_x, grid_y = x.meshgrid(y, indexing="xy")
print(grid_x.numpy())
print(grid_y.numpy())
[[1 2 3]
[1 2 3]
[1 2 3]]
[[4 4 4]
[5 5 5]
[6 6 6]]
Source code in tinygrad/tensor.py
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 | |
squeeze
¤
Returns a tensor with specified dimensions of input of size 1 removed.
If dim is not specified, all dimensions with size 1 are removed.
t = Tensor.zeros(2, 1, 2, 1, 2)
print(t.squeeze().shape)
(2, 2, 2)
print(t.squeeze(0).shape)
(2, 1, 2, 1, 2)
print(t.squeeze(1).shape)
(2, 2, 1, 2)
Source code in tinygrad/mixin/movement.py
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 | |
unsqueeze
¤
Returns a tensor with a new dimension of size 1 inserted at the specified dim.
t = Tensor([1, 2, 3, 4])
print(t.unsqueeze(0).numpy())
[[1 2 3 4]]
print(t.unsqueeze(1).numpy())
[[1]
[2]
[3]
[4]]
Source code in tinygrad/mixin/movement.py
185 186 187 188 189 190 191 192 193 194 195 196 197 198 | |
transpose
¤
transpose(dim0=1, dim1=0) -> Self
Returns a tensor that is a transposed version of the original tensor.
The given dimensions dim0 and dim1 are swapped.
t = Tensor.arange(6).reshape(2, 3)
print(t.numpy())
[[0 1 2]
[3 4 5]]
print(t.transpose(0, 1).numpy())
[[0 3]
[1 4]
[2 5]]
Source code in tinygrad/mixin/movement.py
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 | |
flatten
¤
flatten(start_dim=0, end_dim=-1) -> Self
Flattens the tensor by reshaping it into a one-dimensional tensor.
If start_dim or end_dim are passed, only dimensions starting with start_dim and ending with end_dim are flattened.
t = Tensor.arange(8).reshape(2, 2, 2)
print(t.flatten().numpy())
[0 1 2 3 4 5 6 7]
print(t.flatten(start_dim=1).numpy())
[[0 1 2 3]
[4 5 6 7]]
Source code in tinygrad/mixin/movement.py
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 | |
unflatten
¤
Unflattens dimension dim of the tensor into multiple dimensions specified by sizes. Tensor.flatten() is the inverse of this function.
print(Tensor.ones(3, 4, 1).unflatten(1, (2, 2)).shape)
(3, 2, 2, 1)
print(Tensor.ones(3, 4, 1).unflatten(1, (-1, 2)).shape)
(3, 2, 2, 1)
print(Tensor.ones(5, 12, 3).unflatten(-2, (2, 2, 3, 1, 1)).shape)
(5, 2, 2, 3, 1, 1, 3)
Source code in tinygrad/mixin/movement.py
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 | |
diag
¤
diag() -> Tensor
Returns a 2-D square tensor with the elements of input as the main diagonal.
print(Tensor([1, 2, 3]).diag().numpy())
[[1 0 0]
[0 2 0]
[0 0 3]]
Source code in tinygrad/tensor.py
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 | |
roll
¤
Rolls the tensor along specified dimension(s). The rolling operation is circular, meaning that elements that go beyond the edge are wrapped around to the beginning of the dimension.
t = Tensor.arange(4)
print(t.roll(shifts=1, dims=0).numpy())
[3 0 1 2]
print(t.roll(shifts=-1, dims=0).numpy())
[1 2 3 0]
Source code in tinygrad/tensor.py
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 | |
rearrange
¤
Rearranges input according to formula
See: https://einops.rocks/api/rearrange/
x = Tensor([[1, 2], [3, 4]])
print(Tensor.rearrange(x, "batch channel -> (batch channel)").numpy())
[1 2 3 4]
Source code in tinygrad/mixin/movement.py
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 | |