Movement
Movement (low level)¤
view
¤
view(shape, *args) -> Self
.view is an alias for .reshape.
Source code in tinygrad/mixin/movement.py
178 179 180 | |
reshape
¤
reshape(shape, *args) -> Self
Returns a tensor with the same data as the original tensor but with a different shape.
shape can be passed as a tuple or as separate arguments.
t = Tensor.arange(6)
print(t.reshape(2, 3).numpy())
[[0 1 2]
[3 4 5]]
Source code in tinygrad/mixin/movement.py
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 | |
expand
¤
expand(shape, *args) -> Self
Returns a tensor that is expanded to the shape that is specified. Expand can also increase the number of dimensions that a tensor has.
Passing a -1 or None to a dimension means that its size will not be changed.
t = Tensor([1, 2, 3])
print(t.expand(4, -1).numpy())
[[1 2 3]
[1 2 3]
[1 2 3]
[1 2 3]]
Source code in tinygrad/mixin/movement.py
72 73 74 75 76 77 78 79 80 81 82 83 84 85 | |
permute
¤
permute(order, *args) -> Self
Returns a tensor that is a permutation of the original tensor.
The new tensor has the same data as the original tensor but with the dimensions permuted according to the order specified.
order can be passed as a tuple or as separate arguments.
t = Tensor.empty(2, 3, 5)
print(t.shape)
(2, 3, 5)
print(t.permute(2, 0, 1).shape)
(5, 2, 3)
Source code in tinygrad/mixin/movement.py
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 | |
flip
¤
flip(axis, *args) -> Self
Returns a tensor that reverses the order of the original tensor along given axis.
axis can be passed as a tuple or as separate arguments.
t = Tensor.arange(6).reshape(2, 3)
print(t.numpy())
[[0 1 2]
[3 4 5]]
print(t.flip(0).numpy())
[[3 4 5]
[0 1 2]]
print(t.flip((0, 1)).numpy())
[[5 4 3]
[2 1 0]]
Source code in tinygrad/mixin/movement.py
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 | |
shrink
¤
Returns a tensor that shrinks the each axis based on input arg.
arg must have the same length as self.ndim.
For each axis, it can be None, which means no shrink, or a tuple (start, end) that works the same as Python slice.
t = Tensor.arange(9).reshape(3, 3)
print(t.numpy())
[[0 1 2]
[3 4 5]
[6 7 8]]
print(t.shrink(((None, (1, 3)))).numpy())
[[1 2]
[4 5]
[7 8]]
print(t.shrink((((0, 2), (0, 2)))).numpy())
[[0 1]
[3 4]]
Source code in tinygrad/mixin/movement.py
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 | |
pad
¤
pad(
padding: (
Sequence[sint] | Sequence[tuple[sint, sint] | None]
),
mode: str = "constant",
value: float = 0.0,
) -> Tensor
Returns a tensor with padding applied based on the input padding.
padding supports two padding structures:
-
Flat padding:
(padding_left, padding_right, padding_top, padding_bottom, ...)- This structure matches PyTorch's pad.
paddinglength must be even.
-
Group padding:
(..., (padding_top, padding_bottom), (padding_left, padding_right))- This structure matches pad for JAX, NumPy, TensorFlow, and others.
- For each axis, padding can be
None, meaning no padding, or a tuple(start, end). paddingmust have the same length asself.ndim.
Padding values can be negative, resulting in dimension shrinks that work similarly to Python negative slices.
Padding modes is selected with mode which supports constant, reflect and replicate.
t = Tensor.arange(9).reshape(1, 1, 3, 3)
print(t.numpy())
[[[[0 1 2]
[3 4 5]
[6 7 8]]]]
print(t.pad((1, 2, 0, -1)).numpy())
[[[[0 0 1 2 0 0]
[0 3 4 5 0 0]]]]
print(t.pad(((None, None, (0, -1), (1, 2)))).numpy())
[[[[0 0 1 2 0 0]
[0 3 4 5 0 0]]]]
print(t.pad((1, 2, 0, -1), value=-float('inf')).numpy())
[[[[-inf 0. 1. 2. -inf -inf]
[-inf 3. 4. 5. -inf -inf]]]]
Source code in tinygrad/tensor.py
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 | |
Movement (high level)¤
__getitem__
¤
__getitem__(indices) -> Tensor
Retrieves a sub-tensor using indexing.
Supported Index Types: int | slice | Tensor | None | list | tuple | Ellipsis
Examples:
t = Tensor.arange(12).reshape(3, 4)
print(t.numpy())
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
-
Int Indexing: Select an element or sub-tensor using integers for each dimension.
print(t[1, 2].numpy())6 -
Slice Indexing: Select a range of elements using slice notation (
start:end:stride).print(t[0:2, ::2].numpy())[[0 2] [4 6]] -
Tensor Indexing: Use another tensor as indices for advanced indexing. Using
tupleorlisthere also works.print(t[Tensor([2, 0, 1]), Tensor([1, 2, 3])].numpy())[9 2 7] -
NoneIndexing: Add a new dimension to the tensor.print(t[:, None].shape)(3, 1, 4)
Note
Out-of-bounds indexing results in a value of 0.
t = Tensor([1, 2, 3])
print(t[Tensor([4, 3, 2])].numpy())
[0 0 3]
Source code in tinygrad/tensor.py
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 | |
gather
¤
Gathers values along an axis specified by dim.
t = Tensor([[1, 2], [3, 4]])
print(t.numpy())
[[1 2]
[3 4]]
print(t.gather(1, Tensor([[0, 0], [1, 0]])).numpy())
[[1 1]
[4 3]]
Source code in tinygrad/tensor.py
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 | |
cat
¤
Concatenates self with other Tensor in args along an axis specified by dim.
All tensors must have the same shape except in the concatenating dimension.
t0, t1, t2 = Tensor([[1, 2]]), Tensor([[3, 4]]), Tensor([[5, 6]])
print(t0.cat(t1, t2, dim=0).numpy())
[[1 2]
[3 4]
[5 6]]
print(t0.cat(t1, t2, dim=1).numpy())
[[1 2 3 4 5 6]]
Source code in tinygrad/tensor.py
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 | |
stack
¤
Concatenates self with other Tensor in args along a new dimension specified by dim.
t0, t1, t2 = Tensor([1, 2]), Tensor([3, 4]), Tensor([5, 6])
print(t0.stack(t1, t2, dim=0).numpy())
[[1 2]
[3 4]
[5 6]]
print(t0.stack(t1, t2, dim=1).numpy())
[[1 3 5]
[2 4 6]]
Source code in tinygrad/tensor.py
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 | |
repeat
¤
repeat(repeats, *args) -> Self
Repeats tensor number of times along each dimension specified by repeats.
repeats can be passed as a tuple or as separate arguments.
t = Tensor([1, 2, 3])
print(t.repeat(4, 2).numpy())
[[1 2 3 1 2 3]
[1 2 3 1 2 3]
[1 2 3 1 2 3]
[1 2 3 1 2 3]]
print(t.repeat(4, 2, 1).shape)
(4, 2, 3)
Source code in tinygrad/mixin/movement.py
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 | |
repeat_interleave
¤
Repeats elements of a tensor.
t = Tensor([1, 2, 3])
print(t.repeat_interleave(2).numpy())
[1 1 2 2 3 3]
Source code in tinygrad/mixin/movement.py
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 | |
split
¤
Splits the tensor into chunks along the dimension specified by dim.
If sizes is an integer, it splits into equally sized chunks if possible, otherwise the last chunk will be smaller.
If sizes is a list, it splits into len(sizes) chunks with size in dim according to size.
t = Tensor.arange(10).reshape(5, 2)
print(t.numpy())
[[0 1]
[2 3]
[4 5]
[6 7]
[8 9]]
split = t.split(2)
print("\n".join([repr(x.numpy()) for x in split]))
array([[0, 1],
[2, 3]], dtype=int32)
array([[4, 5],
[6, 7]], dtype=int32)
array([[8, 9]], dtype=int32)
split = t.split([1, 4])
print("\n".join([repr(x.numpy()) for x in split]))
array([[0, 1]], dtype=int32)
array([[2, 3],
[4, 5],
[6, 7],
[8, 9]], dtype=int32)
Source code in tinygrad/tensor.py
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 | |
chunk
¤
Splits the tensor into chunks number of chunks along the dimension dim.
If the tensor size along dim is not divisible by chunks, all returned chunks will be the same size except the last one.
The function may return fewer than the specified number of chunks.
chunked = Tensor.arange(11).chunk(6)
print("\n".join([repr(x.numpy()) for x in chunked]))
array([0, 1], dtype=int32)
array([2, 3], dtype=int32)
array([4, 5], dtype=int32)
array([6, 7], dtype=int32)
array([8, 9], dtype=int32)
array([10], dtype=int32)
chunked = Tensor.arange(12).chunk(6)
print("\n".join([repr(x.numpy()) for x in chunked]))
array([0, 1], dtype=int32)
array([2, 3], dtype=int32)
array([4, 5], dtype=int32)
array([6, 7], dtype=int32)
array([8, 9], dtype=int32)
array([10, 11], dtype=int32)
chunked = Tensor.arange(13).chunk(6)
print("\n".join([repr(x.numpy()) for x in chunked]))
array([0, 1, 2], dtype=int32)
array([3, 4, 5], dtype=int32)
array([6, 7, 8], dtype=int32)
array([ 9, 10, 11], dtype=int32)
array([12], dtype=int32)
Source code in tinygrad/tensor.py
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 | |
unfold
¤
Unfolds the tensor along dimension dim into overlapping windows.
Each window has length size and begins every step elements of self.
Returns the input tensor with dimension dim replaced by dims (n_windows, size)
where n_windows = (self.shape[dim] - size) // step + 1.
unfolded = Tensor.arange(8).unfold(0,2,2)
print("\n".join([repr(x.numpy()) for x in unfolded]))
array([0, 1], dtype=int32)
array([2, 3], dtype=int32)
array([4, 5], dtype=int32)
array([6, 7], dtype=int32)
unfolded = Tensor.arange(27).reshape(3,3,3).unfold(-1,2,3)
print("\n".join([repr(x.numpy()) for x in unfolded]))
array([[[0, 1]],
[[3, 4]],
[[6, 7]]], dtype=int32)
array([[[ 9, 10]],
[[12, 13]],
[[15, 16]]], dtype=int32)
array([[[18, 19]],
[[21, 22]],
[[24, 25]]], dtype=int32)
Source code in tinygrad/tensor.py
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 | |
meshgrid
¤
Generates coordinate matrices from coordinate vectors. Input tensors can be scalars or 1D tensors.
indexing determines how the output grids are aligned.
ij indexing follows matrix-style indexing and xy indexing follows Cartesian-style indexing.
x, y = Tensor([1, 2, 3]), Tensor([4, 5, 6])
grid_x, grid_y = x.meshgrid(y)
print(grid_x.numpy())
print(grid_y.numpy())
[[1 1 1]
[2 2 2]
[3 3 3]]
[[4 5 6]
[4 5 6]
[4 5 6]]
grid_x, grid_y = x.meshgrid(y, indexing="xy")
print(grid_x.numpy())
print(grid_y.numpy())
[[1 2 3]
[1 2 3]
[1 2 3]]
[[4 4 4]
[5 5 5]
[6 6 6]]
Source code in tinygrad/tensor.py
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 | |
squeeze
¤
Returns a tensor with specified dimensions of input of size 1 removed.
If dim is not specified, all dimensions with size 1 are removed.
t = Tensor.zeros(2, 1, 2, 1, 2)
print(t.squeeze().shape)
(2, 2, 2)
print(t.squeeze(0).shape)
(2, 1, 2, 1, 2)
print(t.squeeze(1).shape)
(2, 2, 1, 2)
Source code in tinygrad/mixin/movement.py
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 | |
unsqueeze
¤
Returns a tensor with a new dimension of size 1 inserted at the specified dim.
t = Tensor([1, 2, 3, 4])
print(t.unsqueeze(0).numpy())
[[1 2 3 4]]
print(t.unsqueeze(1).numpy())
[[1]
[2]
[3]
[4]]
Source code in tinygrad/mixin/movement.py
203 204 205 206 207 208 209 210 211 212 213 214 215 216 | |
transpose
¤
transpose(dim0=1, dim1=0) -> Self
Returns a tensor that is a transposed version of the original tensor.
The given dimensions dim0 and dim1 are swapped.
t = Tensor.arange(6).reshape(2, 3)
print(t.numpy())
[[0 1 2]
[3 4 5]]
print(t.transpose(0, 1).numpy())
[[0 3]
[1 4]
[2 5]]
Source code in tinygrad/mixin/movement.py
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 | |
flatten
¤
flatten(start_dim=0, end_dim=-1) -> Self
Flattens the tensor by reshaping it into a one-dimensional tensor.
If start_dim or end_dim are passed, only dimensions starting with start_dim and ending with end_dim are flattened.
t = Tensor.arange(8).reshape(2, 2, 2)
print(t.flatten().numpy())
[0 1 2 3 4 5 6 7]
print(t.flatten(start_dim=1).numpy())
[[0 1 2 3]
[4 5 6 7]]
Source code in tinygrad/mixin/movement.py
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 | |
unflatten
¤
Unflattens dimension dim of the tensor into multiple dimensions specified by sizes. Tensor.flatten() is the inverse of this function.
print(Tensor.ones(3, 4, 1).unflatten(1, (2, 2)).shape)
(3, 2, 2, 1)
print(Tensor.ones(3, 4, 1).unflatten(1, (-1, 2)).shape)
(3, 2, 2, 1)
print(Tensor.ones(5, 12, 3).unflatten(-2, (2, 2, 3, 1, 1)).shape)
(5, 2, 2, 3, 1, 1, 3)
Source code in tinygrad/mixin/movement.py
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 | |
diag
¤
diag() -> Tensor
Returns a 2-D square tensor with the elements of input as the main diagonal.
print(Tensor([1, 2, 3]).diag().numpy())
[[1 0 0]
[0 2 0]
[0 0 3]]
Source code in tinygrad/tensor.py
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 | |
roll
¤
Rolls the tensor along specified dimension(s). The rolling operation is circular, meaning that elements that go beyond the edge are wrapped around to the beginning of the dimension.
t = Tensor.arange(4)
print(t.roll(shifts=1, dims=0).numpy())
[3 0 1 2]
print(t.roll(shifts=-1, dims=0).numpy())
[1 2 3 0]
Source code in tinygrad/tensor.py
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 | |
rearrange
¤
Rearranges input according to formula
See: https://einops.rocks/api/rearrange/
x = Tensor([[1, 2], [3, 4]])
print(Tensor.rearrange(x, "batch channel -> (batch channel)").numpy())
[1 2 3 4]
Source code in tinygrad/mixin/movement.py
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 | |