Movement
Movement (low level)¤
view
¤
view(*shape) -> Tensor
.view
is an alias for .reshape
.
Source code in tinygrad/tensor.py
910 911 912 |
|
reshape
¤
reshape(shape, *args) -> Tensor
Returns a tensor with the same data as the original tensor but with a different shape.
shape
can be passed as a tuple or as separate arguments.
t = Tensor.arange(6)
print(t.reshape(2, 3).numpy())
[[0 1 2]
[3 4 5]]
Source code in tinygrad/tensor.py
914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 |
|
expand
¤
expand(shape, *args) -> Tensor
Returns a tensor that is expanded to the shape that is specified. Expand can also increase the number of dimensions that a tensor has.
Passing a -1
or None
to a dimension means that its size will not be changed.
t = Tensor([1, 2, 3])
print(t.expand(4, -1).numpy())
[[1 2 3]
[1 2 3]
[1 2 3]
[1 2 3]]
Source code in tinygrad/tensor.py
931 932 933 934 935 936 937 938 939 940 941 942 943 |
|
permute
¤
permute(order, *args) -> Tensor
Returns a tensor that is a permutation of the original tensor.
The new tensor has the same data as the original tensor but with the dimensions permuted according to the order specified.
order
can be passed as a tuple or as separate arguments.
t = Tensor.arange(6).reshape(2, 3)
print(t.numpy())
[[0 1 2]
[3 4 5]]
print(t.permute(1, 0).numpy())
[[0 3]
[1 4]
[2 5]]
Source code in tinygrad/tensor.py
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 |
|
flip
¤
flip(axis, *args) -> Tensor
Returns a tensor that reverses the order of the original tensor along given axis
.
axis
can be passed as a tuple or as separate arguments.
t = Tensor.arange(6).reshape(2, 3)
print(t.numpy())
[[0 1 2]
[3 4 5]]
print(t.flip(0).numpy())
[[3 4 5]
[0 1 2]]
print(t.flip((0, 1)).numpy())
[[5 4 3]
[2 1 0]]
Source code in tinygrad/tensor.py
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 |
|
shrink
¤
Returns a tensor that shrinks the each axis based on input arg.
arg
must have the same length as self.ndim
.
For each axis, it can be None
, which means no shrink, or a tuple (start, end)
that works the same as Python slice.
t = Tensor.arange(9).reshape(3, 3)
print(t.numpy())
[[0 1 2]
[3 4 5]
[6 7 8]]
print(t.shrink(((None, (1, 3)))).numpy())
[[1 2]
[4 5]
[7 8]]
print(t.shrink((((0, 2), (0, 2)))).numpy())
[[0 1]
[3 4]]
Source code in tinygrad/tensor.py
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 |
|
pad
¤
pad(
padding: Union[
Sequence[sint],
Sequence[Optional[Tuple[sint, sint]]],
],
mode: str = "constant",
value: float = 0.0,
) -> Tensor
Returns a tensor with padding applied based on the input padding
.
padding
supports two padding structures:
- Flat padding: (padding_left, padding_right, padding_top, padding_bottom, ...)
- This structure matches PyTorch's pad.
-
padding
length must be even. -
Group padding: (..., (padding_top, padding_bottom), (padding_left, padding_right))
- This structure matches pad for jax, numpy, tensorflow and others.
- For each axis, padding can be
None
, meaning no padding, or a tuple(start, end)
. padding
must have the same length asself.ndim
.
Padding values can be negative, resulting in dimension shrinks that work similarly to Python negative slices.
Padding modes is selected with mode
which supports constant
, reflect
and replicate
.
t = Tensor.arange(9).reshape(1, 1, 3, 3)
print(t.numpy())
[[[[0 1 2]
[3 4 5]
[6 7 8]]]]
print(t.pad((1, 2, 0, -1)).numpy())
[[[[0 0 1 2 0 0]
[0 3 4 5 0 0]]]]
print(t.pad(((None, None, (0, -1), (1, 2)))).numpy())
[[[[0 0 1 2 0 0]
[0 3 4 5 0 0]]]]
print(t.pad((1, 2, 0, -1), value=-float('inf')).numpy())
[[[[-inf 0. 1. 2. -inf -inf]
[-inf 3. 4. 5. -inf -inf]]]]
Source code in tinygrad/tensor.py
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 |
|
Movement (high level)¤
gather
¤
Gathers values along an axis specified by dim
.
t = Tensor([[1, 2], [3, 4]])
print(t.numpy())
[[1 2]
[3 4]]
print(t.gather(1, Tensor([[0, 0], [1, 0]])).numpy())
[[1 1]
[4 3]]
Source code in tinygrad/tensor.py
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 |
|
cat
¤
Concatenates self with other Tensor
in args
along an axis specified by dim
.
All tensors must have the same shape except in the concatenating dimension.
t0, t1, t2 = Tensor([[1, 2]]), Tensor([[3, 4]]), Tensor([[5, 6]])
print(t0.cat(t1, t2, dim=0).numpy())
[[1 2]
[3 4]
[5 6]]
print(t0.cat(t1, t2, dim=1).numpy())
[[1 2 3 4 5 6]]
Source code in tinygrad/tensor.py
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 |
|
stack
¤
Concatenates self with other Tensor
in args
along a new dimension specified by dim
.
t0, t1, t2 = Tensor([1, 2]), Tensor([3, 4]), Tensor([5, 6])
print(t0.stack(t1, t2, dim=0).numpy())
[[1 2]
[3 4]
[5 6]]
print(t0.stack(t1, t2, dim=1).numpy())
[[1 3 5]
[2 4 6]]
Source code in tinygrad/tensor.py
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 |
|
repeat
¤
repeat(repeats, *args) -> Tensor
Repeats tensor number of times along each dimension specified by repeats
.
repeats
can be passed as a tuple or as separate arguments.
t = Tensor([1, 2, 3])
print(t.repeat(4, 2).numpy())
[[1 2 3 1 2 3]
[1 2 3 1 2 3]
[1 2 3 1 2 3]
[1 2 3 1 2 3]]
print(t.repeat(4, 2, 1).shape)
(4, 2, 3)
Source code in tinygrad/tensor.py
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 |
|
repeat_interleave
¤
Repeat elements of a tensor.
t = Tensor([1, 2, 3])
print(t.repeat_interleave(2).numpy())
[1 1 2 2 3 3]
Source code in tinygrad/tensor.py
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 |
|
split
¤
Splits the tensor into chunks along the dimension specified by dim
.
If sizes
is an integer, it splits into equally sized chunks if possible, otherwise the last chunk will be smaller.
If sizes
is a list, it splits into len(sizes)
chunks with size in dim
according to size
.
t = Tensor.arange(10).reshape(5, 2)
print(t.numpy())
[[0 1]
[2 3]
[4 5]
[6 7]
[8 9]]
split = t.split(2)
print("\n".join([repr(x.numpy()) for x in split]))
array([[0, 1],
[2, 3]], dtype=int32)
array([[4, 5],
[6, 7]], dtype=int32)
array([[8, 9]], dtype=int32)
split = t.split([1, 4])
print("\n".join([repr(x.numpy()) for x in split]))
array([[0, 1]], dtype=int32)
array([[2, 3],
[4, 5],
[6, 7],
[8, 9]], dtype=int32)
Source code in tinygrad/tensor.py
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 |
|
chunk
¤
Splits the tensor into chunks
number of chunks along the dimension dim
.
If the tensor size along dim
is not divisible by chunks
, all returned chunks will be the same size except the last one.
The function may return fewer than the specified number of chunks.
chunked = Tensor.arange(11).chunk(6)
print("\n".join([repr(x.numpy()) for x in chunked]))
array([0, 1], dtype=int32)
array([2, 3], dtype=int32)
array([4, 5], dtype=int32)
array([6, 7], dtype=int32)
array([8, 9], dtype=int32)
array([10], dtype=int32)
chunked = Tensor.arange(12).chunk(6)
print("\n".join([repr(x.numpy()) for x in chunked]))
array([0, 1], dtype=int32)
array([2, 3], dtype=int32)
array([4, 5], dtype=int32)
array([6, 7], dtype=int32)
array([8, 9], dtype=int32)
array([10, 11], dtype=int32)
chunked = Tensor.arange(13).chunk(6)
print("\n".join([repr(x.numpy()) for x in chunked]))
array([0, 1, 2], dtype=int32)
array([3, 4, 5], dtype=int32)
array([6, 7, 8], dtype=int32)
array([ 9, 10, 11], dtype=int32)
array([12], dtype=int32)
Source code in tinygrad/tensor.py
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 |
|
meshgrid
¤
meshgrid(
*args: Tensor,
indexing: Union[Literal["ij"], Literal["xy"]] = "ij"
) -> Tuple[Tensor, ...]
Generates coordinate matrices from coordinate vectors. Input tensors can be scalars or 1D tensors.
indexing
determines how the output grids are aligned.
ij
indexing follows matrix-style indexing and xy
indexing follows Cartesian-style indexing.
x, y = Tensor([1, 2, 3]), Tensor([4, 5, 6])
grid_x, grid_y = x.meshgrid(y)
print(grid_x.numpy())
print(grid_y.numpy())
[[1 1 1]
[2 2 2]
[3 3 3]]
[[4 5 6]
[4 5 6]
[4 5 6]]
grid_x, grid_y = x.meshgrid(y, indexing="xy")
print(grid_x.numpy())
print(grid_y.numpy())
[[1 2 3]
[1 2 3]
[1 2 3]]
[[4 4 4]
[5 5 5]
[6 6 6]]
Source code in tinygrad/tensor.py
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 |
|
squeeze
¤
Returns a tensor with specified dimensions of input of size 1 removed.
If dim
is not specified, all dimensions with size 1 are removed.
t = Tensor.zeros(2, 1, 2, 1, 2)
print(t.squeeze().shape)
(2, 2, 2)
print(t.squeeze(0).shape)
(2, 1, 2, 1, 2)
print(t.squeeze(1).shape)
(2, 2, 1, 2)
Source code in tinygrad/tensor.py
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 |
|
unsqueeze
¤
Returns a tensor with a new dimension of size 1 inserted at the specified dim
.
t = Tensor([1, 2, 3, 4])
print(t.unsqueeze(0).numpy())
[[1 2 3 4]]
print(t.unsqueeze(1).numpy())
[[1]
[2]
[3]
[4]]
Source code in tinygrad/tensor.py
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 |
|
transpose
¤
transpose(dim0=1, dim1=0) -> Tensor
Returns a tensor that is a transposed version of the original tensor.
The given dimensions dim0
and dim1
are swapped.
t = Tensor.arange(6).reshape(2, 3)
print(t.numpy())
[[0 1 2]
[3 4 5]]
print(t.transpose(0, 1).numpy())
[[0 3]
[1 4]
[2 5]]
Source code in tinygrad/tensor.py
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 |
|
flatten
¤
flatten(start_dim=0, end_dim=-1)
Flattens the tensor by reshaping it into a one-dimensional tensor.
If start_dim
or end_dim
are passed, only dimensions starting with start_dim
and ending with end_dim
are flattened.
t = Tensor.arange(8).reshape(2, 2, 2)
print(t.flatten().numpy())
[0 1 2 3 4 5 6 7]
print(t.flatten(start_dim=1).numpy())
[[0 1 2 3]
[4 5 6 7]]
Source code in tinygrad/tensor.py
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 |
|
unflatten
¤
Unflattens dimension dim
of the tensor into multiple dimensions specified by sizes
. Tensor.flatten()
is the inverse of this function.
print(Tensor.ones(3, 4, 1).unflatten(1, (2, 2)).shape)
(3, 2, 2, 1)
print(Tensor.ones(3, 4, 1).unflatten(1, (-1, 2)).shape)
(3, 2, 2, 1)
print(Tensor.ones(5, 12, 3).unflatten(-2, (2, 2, 3, 1, 1)).shape)
(5, 2, 2, 3, 1, 1, 3)
Source code in tinygrad/tensor.py
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 |
|