Skip to content

Complex Ops

Reduce¤

sum ¤

sum(
    axis: Optional[Union[int, Sequence[int]]] = None,
    keepdim=False,
    acc_dtype: Optional[DTypeLike] = None,
)

Returns the sum of the elements of the tensor along the specified axis or axes.

You can pass in axis and keepdim keyword arguments to control the axis along which the maximum is computed and whether the reduced dimensions are retained.

You can pass in acc_dtype keyword argument to control the data type of the accumulation. If not specified, the accumulation data type is chosen based on the input tensor's data type.

t = Tensor.arange(6).reshape(2, 3)
print(t.numpy())
[[0 1 2]
 [3 4 5]]
print(t.sum().numpy())
15
print(t.sum(axis=0).numpy())
[3 5 7]
print(t.sum(axis=1).numpy())
[ 3 12]

Source code in tinygrad/tensor.py
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
def sum(self, axis:Optional[Union[int, Sequence[int]]]=None, keepdim=False, acc_dtype:Optional[DTypeLike]=None):
  """
  Returns the sum of the elements of the tensor along the specified axis or axes.

  You can pass in `axis` and `keepdim` keyword arguments to control the axis along
  which the maximum is computed and whether the reduced dimensions are retained.

  You can pass in `acc_dtype` keyword argument to control the data type of the accumulation.
  If not specified, the accumulation data type is chosen based on the input tensor's data type.

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor.arange(6).reshape(2, 3)
  print(t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.sum().numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.sum(axis=0).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.sum(axis=1).numpy())
  ```
  """
  ret = self.cast(sum_acc_dtype(self.dtype) if acc_dtype is None else acc_dtype)._reduce(F.Sum, axis, keepdim)
  return ret.cast(self.dtype) if acc_dtype is None and self.dtype in (dtypes.float16, dtypes.bfloat16) else ret

prod ¤

prod(
    axis: Optional[Union[int, Sequence[int]]] = None,
    keepdim=False,
    acc_dtype: Optional[DTypeLike] = None,
)

Returns the product of the elements of the tensor along the specified axis or axes.

You can pass in axis and keepdim keyword arguments to control the axis along which the maximum is computed and whether the reduced dimensions are retained.

You can pass in acc_dtype keyword argument to control the data type of the accumulation. If not specified, the accumulation data type is chosen based on the input tensor's data type.

t = Tensor([-1, -2, -3, 1, 2, 3]).reshape(2, 3)
print(t.numpy())
[[-1 -2 -3]
 [ 1  2  3]]
print(t.prod().numpy())
-36
print(t.prod(axis=0).numpy())
[-1 -4 -9]
print(t.prod(axis=1).numpy())
[-6  6]

Source code in tinygrad/tensor.py
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
def prod(self, axis:Optional[Union[int, Sequence[int]]]=None, keepdim=False, acc_dtype:Optional[DTypeLike]=None):
  """
  Returns the product of the elements of the tensor along the specified axis or axes.

  You can pass in `axis` and `keepdim` keyword arguments to control the axis along
  which the maximum is computed and whether the reduced dimensions are retained.

  You can pass in `acc_dtype` keyword argument to control the data type of the accumulation.
  If not specified, the accumulation data type is chosen based on the input tensor's data type.

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor([-1, -2, -3, 1, 2, 3]).reshape(2, 3)
  print(t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.prod().numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.prod(axis=0).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.prod(axis=1).numpy())
  ```
  """
  return self.cast(acc_dtype if acc_dtype is not None else self.dtype)._reduce(F.Prod, axis, keepdim)

max ¤

max(
    axis: Optional[Union[int, Sequence[int]]] = None,
    keepdim=False,
)

Returns the maximum value of the tensor along the specified axis or axes.

You can pass in axis and keepdim keyword arguments to control the axis along which the maximum is computed and whether the reduced dimensions are retained.

t = Tensor([[1, 0, 2], [5, 4, 3]])
print(t.numpy())
[[1 0 2]
 [5 4 3]]
print(t.max().numpy())
5
print(t.max(axis=0).numpy())
[5 4 3]
print(t.max(axis=1, keepdim=True).numpy())
[[2]
 [5]]

Source code in tinygrad/tensor.py
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
def max(self, axis:Optional[Union[int, Sequence[int]]]=None, keepdim=False):
  """
  Returns the maximum value of the tensor along the specified axis or axes.

  You can pass in `axis` and `keepdim` keyword arguments to control the axis along
  which the maximum is computed and whether the reduced dimensions are retained.

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor([[1, 0, 2], [5, 4, 3]])
  print(t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.max().numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.max(axis=0).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.max(axis=1, keepdim=True).numpy())
  ```
  """
  return self._reduce(F.Max, axis, keepdim)

min ¤

min(
    axis: Optional[Union[int, Sequence[int]]] = None,
    keepdim=False,
)

Returns the minimum value of the tensor along the specified axis or axes.

You can pass in axis and keepdim keyword arguments to control the axis along which the minimum is computed and whether the reduced dimensions are retained.

t = Tensor([[1, 0, 2], [5, 4, 3]])
print(t.numpy())
[[1 0 2]
 [5 4 3]]
print(t.min().numpy())
0
print(t.min(axis=0).numpy())
[1 0 2]
print(t.min(axis=1, keepdim=True).numpy())
[[0]
 [3]]

Source code in tinygrad/tensor.py
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
def min(self, axis:Optional[Union[int, Sequence[int]]]=None, keepdim=False):
  """
  Returns the minimum value of the tensor along the specified axis or axes.

  You can pass in `axis` and `keepdim` keyword arguments to control the axis along
  which the minimum is computed and whether the reduced dimensions are retained.

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor([[1, 0, 2], [5, 4, 3]])
  print(t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.min().numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.min(axis=0).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.min(axis=1, keepdim=True).numpy())
  ```
  """
  if dtypes.is_int(self.dtype) or self.dtype == dtypes.bool: return ~((~self).max(axis=axis, keepdim=keepdim))
  return -((-self).max(axis=axis, keepdim=keepdim))

any ¤

any(
    axis: Optional[Union[int, Sequence[int]]] = None,
    keepdim=False,
)

Tests if any element evaluates to True along the specified axis or axes.

You can pass in axis and keepdim keyword arguments to control the reduce axis and whether the reduced dimensions are retained.

t = Tensor([[True, True], [True, False], [False, False]])
print(t.numpy())
[[ True  True]
 [ True False]
 [False False]]
print(t.any().numpy())
True
print(t.any(axis=0).numpy())
[ True  True]
print(t.any(axis=1, keepdim=True).numpy())
[[ True]
 [ True]
 [False]]

Source code in tinygrad/tensor.py
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
def any(self, axis:Optional[Union[int, Sequence[int]]]=None, keepdim=False):
  """
  Tests if any element evaluates to `True` along the specified axis or axes.

  You can pass in `axis` and `keepdim` keyword arguments to control the reduce axis and whether the reduced dimensions are retained.

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor([[True, True], [True, False], [False, False]])
  print(t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.any().numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.any(axis=0).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.any(axis=1, keepdim=True).numpy())
  ```
  """
  return self.bool().max(axis, keepdim)

all ¤

all(
    axis: Optional[Union[int, Sequence[int]]] = None,
    keepdim=False,
)

Tests if all element evaluates to True along the specified axis or axes.

You can pass in axis and keepdim keyword arguments to control the reduce axis and whether the reduced dimensions are retained.

t = Tensor([[True, True], [True, False], [False, False]])
print(t.numpy())
[[ True  True]
 [ True False]
 [False False]]
print(t.all().numpy())
False
print(t.all(axis=0).numpy())
[False False]
print(t.all(axis=1, keepdim=True).numpy())
[[ True]
 [False]
 [False]]

Source code in tinygrad/tensor.py
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
def all(self, axis:Optional[Union[int, Sequence[int]]]=None, keepdim=False):
  """
  Tests if all element evaluates to `True` along the specified axis or axes.

  You can pass in `axis` and `keepdim` keyword arguments to control the reduce axis and whether the reduced dimensions are retained.

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor([[True, True], [True, False], [False, False]])
  print(t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.all().numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.all(axis=0).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.all(axis=1, keepdim=True).numpy())
  ```
  """
  return self.logical_not().any(axis, keepdim).logical_not()

mean ¤

mean(
    axis: Optional[Union[int, Sequence[int]]] = None,
    keepdim=False,
)

Returns the mean value of the tensor along the specified axis or axes.

You can pass in axis and keepdim keyword arguments to control the axis along which the mean is computed and whether the reduced dimensions are retained.

Tensor.manual_seed(42)
t = Tensor.normal(2, 3, mean=2.5, std=0.5)
print(t.numpy())
[[2.9889 2.7339 2.7763]
 [2.3356 2.0722 2.6376]]
print(t.mean().numpy())
2.5907674
print(t.mean(axis=0).numpy())
[2.6623 2.4031 2.707 ]
print(t.mean(axis=1).numpy())
[2.833  2.3485]

Source code in tinygrad/tensor.py
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
def mean(self, axis:Optional[Union[int, Sequence[int]]]=None, keepdim=False):
  """
  Returns the mean value of the tensor along the specified axis or axes.

  You can pass in `axis` and `keepdim` keyword arguments to control the axis along
  which the mean is computed and whether the reduced dimensions are retained.

  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  t = Tensor.normal(2, 3, mean=2.5, std=0.5)
  print(t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.mean().numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.mean(axis=0).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.mean(axis=1).numpy())
  ```
  """
  output_dtype = self.dtype if dtypes.is_float(self.dtype) else dtypes.float32
  numerator = self.cast(sum_acc_dtype(self.dtype)).sum(axis=axis, keepdim=keepdim)
  return numerator.div(prod([si for si, so in zip(self.shape, self.sum(axis=axis, keepdim=True).shape) if resolve(si != so)])).cast(output_dtype)

var ¤

var(
    axis: Optional[Union[int, Sequence[int]]] = None,
    keepdim=False,
    correction=1,
)

Returns the variance of the tensor along the specified axis or axes.

You can pass in axis, keepdim, and correction keyword arguments to control the axis along which the variance is computed, whether the reduced dimensions are retained, and the Bessel's correction applied.

Tensor.manual_seed(42)
t = Tensor.normal(2, 3, mean=2.5, std=0.5)
print(t.numpy())
[[2.9889 2.7339 2.7763]
 [2.3356 2.0722 2.6376]]
print(t.var().numpy())
0.109925404
print(t.var(axis=0).numpy())
[0.2134 0.2189 0.0096]
print(t.var(axis=1).numpy())
[0.0187 0.08  ]

Source code in tinygrad/tensor.py
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
def var(self, axis:Optional[Union[int, Sequence[int]]]=None, keepdim=False, correction=1):
  """
  Returns the variance of the tensor along the specified axis or axes.

  You can pass in `axis`, `keepdim`, and `correction` keyword arguments to control the axis along
  which the variance is computed, whether the reduced dimensions are retained, and the Bessel's correction applied.

  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  t = Tensor.normal(2, 3, mean=2.5, std=0.5)
  print(t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.var().numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.var(axis=0).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.var(axis=1).numpy())
  ```
  """
  squares = (self - self.mean(axis=axis, keepdim=True)).square()
  n = prod([si for si, so in zip(self.shape, squares.sum(axis=axis, keepdim=True).shape) if resolve(si != so)])
  return squares.sum(axis=axis, keepdim=keepdim).div(smax([0, n-correction]))

std ¤

std(
    axis: Optional[Union[int, Sequence[int]]] = None,
    keepdim=False,
    correction=1,
)

Returns the standard deviation of the tensor along the specified axis or axes.

You can pass in axis, keepdim, and correction keyword arguments to control the axis along which the standard deviation is computed, whether the reduced dimensions are retained, and the Bessel's correction applied.

Tensor.manual_seed(42)
t = Tensor.normal(2, 3, mean=2.5, std=0.5)
print(t.numpy())
[[2.9889 2.7339 2.7763]
 [2.3356 2.0722 2.6376]]
print(t.std().numpy())
0.33155
print(t.std(axis=0).numpy())
[0.462  0.4679 0.0981]
print(t.std(axis=1).numpy())
[0.1367 0.2829]

Source code in tinygrad/tensor.py
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
def std(self, axis:Optional[Union[int, Sequence[int]]]=None, keepdim=False, correction=1):
  """
  Returns the standard deviation of the tensor along the specified axis or axes.

  You can pass in `axis`, `keepdim`, and `correction` keyword arguments to control the axis along
  which the standard deviation is computed, whether the reduced dimensions are retained, and the Bessel's correction applied.

  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  t = Tensor.normal(2, 3, mean=2.5, std=0.5)
  print(t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.std().numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.std(axis=0).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.std(axis=1).numpy())
  ```
  """
  return self.var(axis, keepdim, correction).sqrt()

std_mean ¤

std_mean(
    axis: Optional[Union[int, Sequence[int]]] = None,
    keepdim=False,
    correction=1,
)

Calculates the standard deviation and mean over the dimensions specified by dim. Syntactic sugar around Tensor.std and Tensor.mean to match torch.std_mean.

Tensor.manual_seed(42)
t = Tensor.normal(2, 3, mean=2.5, std=0.5)
print(t.numpy())
[[2.9889 2.7339 2.7763]
 [2.3356 2.0722 2.6376]]
std, mean = t.std_mean()
print(std.numpy(), mean.numpy())
0.33155 2.5907674

Source code in tinygrad/tensor.py
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
def std_mean(self, axis:Optional[Union[int, Sequence[int]]]=None, keepdim=False, correction=1):
  """
  Calculates the standard deviation and mean over the dimensions specified by dim.
  Syntactic sugar around `Tensor.std` and `Tensor.mean` to match `torch.std_mean`.

  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  t = Tensor.normal(2, 3, mean=2.5, std=0.5)
  print(t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  std, mean = t.std_mean()
  print(std.numpy(), mean.numpy())
  ```
  """
  return self.std(axis, keepdim, correction), self.mean(axis, keepdim)

softmax ¤

softmax(axis=-1, dtype: Optional[DTypeLike] = None)

Applies the softmax function to the tensor along the specified axis.

Rescales the elements of the tensor such that they lie in the range [0, 1] and sum to 1.

You can pass in the axis keyword argument to control the axis along which the softmax is computed.

Tensor.manual_seed(42)
t = Tensor.randn(2, 3)
print(t.numpy())
[[ 0.9779  0.4678  0.5526]
 [-0.3288 -0.8555  0.2753]]
print(t.softmax().numpy())
[[0.4436 0.2664 0.29  ]
 [0.2924 0.1727 0.5349]]
print(t.softmax(axis=0).numpy())
[[0.787  0.7897 0.5689]
 [0.213  0.2103 0.4311]]

Source code in tinygrad/tensor.py
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
def softmax(self, axis=-1, dtype:Optional[DTypeLike]=None):
  """
  Applies the softmax function to the tensor along the specified axis.

  Rescales the elements of the tensor such that they lie in the range [0, 1] and sum to 1.

  You can pass in the `axis` keyword argument to control the axis along which the softmax is computed.

  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  t = Tensor.randn(2, 3)
  print(t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.softmax().numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.softmax(axis=0).numpy())
  ```
  """
  _, e, ss = self._softmax(axis, dtype)
  return e.div(ss)

log_softmax ¤

log_softmax(axis=-1, dtype: Optional[DTypeLike] = None)

Applies the log-softmax function to the tensor along the specified axis.

The log-softmax function is a numerically stable alternative to the softmax function in log space.

You can pass in the axis keyword argument to control the axis along which the log-softmax is computed.

Tensor.manual_seed(42)
t = Tensor.randn(2, 3)
print(t.numpy())
[[ 0.9779  0.4678  0.5526]
 [-0.3288 -0.8555  0.2753]]
print(t.log_softmax().numpy())
[[-0.8127 -1.3228 -1.238 ]
 [-1.2297 -1.7564 -0.6256]]
print(t.log_softmax(axis=0).numpy())
[[-0.2396 -0.2361 -0.564 ]
 [-1.5463 -1.5594 -0.8414]]

Source code in tinygrad/tensor.py
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
def log_softmax(self, axis=-1, dtype:Optional[DTypeLike]=None):
  """
  Applies the log-softmax function to the tensor along the specified axis.

  The log-softmax function is a numerically stable alternative to the softmax function in log space.

  You can pass in the `axis` keyword argument to control the axis along which the log-softmax is computed.

  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  t = Tensor.randn(2, 3)
  print(t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.log_softmax().numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.log_softmax(axis=0).numpy())
  ```
  """
  m, _, ss = self._softmax(axis, dtype)
  return m - ss.log()

logsumexp ¤

logsumexp(axis=None, keepdim=False)

Computes the log-sum-exp of the tensor along the specified axis or axes.

The log-sum-exp function is a numerically stable way to compute the logarithm of the sum of exponentials.

You can pass in axis and keepdim keyword arguments to control the axis along which the log-sum-exp is computed and whether the reduced dimensions are retained.

Tensor.manual_seed(42)
t = Tensor.randn(2, 3)
print(t.numpy())
[[ 0.9779  0.4678  0.5526]
 [-0.3288 -0.8555  0.2753]]
print(t.logsumexp().numpy())
2.1347282
print(t.logsumexp(axis=0).numpy())
[1.2174 0.7039 1.1167]
print(t.logsumexp(axis=1).numpy())
[1.7906 0.9009]

Source code in tinygrad/tensor.py
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
def logsumexp(self, axis=None, keepdim=False):
  """
  Computes the log-sum-exp of the tensor along the specified axis or axes.

  The log-sum-exp function is a numerically stable way to compute the logarithm of the sum of exponentials.

  You can pass in `axis` and `keepdim` keyword arguments to control the axis along
  which the log-sum-exp is computed and whether the reduced dimensions are retained.

  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  t = Tensor.randn(2, 3)
  print(t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.logsumexp().numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.logsumexp(axis=0).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.logsumexp(axis=1).numpy())
  ```
  """
  m = self.max(axis=axis, keepdim=True)
  return (self - m).exp().sum(axis=axis, keepdim=keepdim).log() + m.squeeze(axis)

logcumsumexp ¤

logcumsumexp(axis=0)

Computes the log-cumsum-exp of the tensor along the specified axis or axes.

The log-cumsum-exp function is a numerically stable way to compute the logarithm of the cumulative sum of exponentials.

You can pass in the axis keyword argument to control the axis along which the log-cum-sum-exp is computed.

Tensor.manual_seed(42)
t = Tensor.randn(2, 3)
print(t.numpy())
[[ 0.9779  0.4678  0.5526]
 [-0.3288 -0.8555  0.2753]]
print(t.logcumsumexp().numpy())
[[0.9779 0.4678 0.5526]
 [1.2174 0.7039 1.1167]]
print(t.logcumsumexp(axis=0).numpy())
[[0.9779 0.4678 0.5526]
 [1.2174 0.7039 1.1167]]
print(t.logcumsumexp(axis=1).numpy())
[[ 0.9779  1.4481  1.7906]
 [-0.3288  0.1353  0.9009]]

Source code in tinygrad/tensor.py
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
def logcumsumexp(self, axis=0):
  """
  Computes the log-cumsum-exp of the tensor along the specified axis or axes.

  The log-cumsum-exp function is a numerically stable way to compute the logarithm of the cumulative sum of exponentials.

  You can pass in the `axis` keyword argument to control the axis along which
  the log-cum-sum-exp is computed.

  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  t = Tensor.randn(2, 3)
  print(t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.logcumsumexp().numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.logcumsumexp(axis=0).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.logcumsumexp(axis=1).numpy())
  ```
  """
  m = self.max(axis=axis, keepdim=True)
  return (self - m).exp().cumsum(axis=axis).log() + m

argmax ¤

argmax(axis=None, keepdim=False)

Returns the indices of the maximum value of the tensor along the specified axis.

You can pass in axis and keepdim keyword arguments to control the axis along which the maximum is computed and whether the reduced dimensions are retained.

t = Tensor([[1, 0, 2], [5, 4, 3]])
print(t.numpy())
[[1 0 2]
 [5 4 3]]
print(t.argmax().numpy()) # Returns the index of the maximum value in the flattened tensor.
3
print(t.argmax(axis=0).numpy()) # Returns the indices of the maximum values along axis 0.
[1 1 1]
print(t.argmax(axis=1).numpy()) # Returns the indices of the maximum values along axis 1.
[2 0]

Source code in tinygrad/tensor.py
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
def argmax(self, axis=None, keepdim=False):
  """
  Returns the indices of the maximum value of the tensor along the specified axis.

  You can pass in `axis` and `keepdim` keyword arguments to control the axis along
  which the maximum is computed and whether the reduced dimensions are retained.

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor([[1, 0, 2], [5, 4, 3]])
  print(t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.argmax().numpy()) # Returns the index of the maximum value in the flattened tensor.
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.argmax(axis=0).numpy()) # Returns the indices of the maximum values along axis 0.
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.argmax(axis=1).numpy()) # Returns the indices of the maximum values along axis 1.
  ```
  """
  if axis is None: return self.flatten().argmax(0)
  axis = self._resolve_dim(axis)
  m = self == self.max(axis=axis, keepdim=True)
  idx = m * Tensor.arange(self.shape[axis],0,-1, requires_grad=False, device=self.device).reshape(self.shape[axis], *[1]*(self.ndim-axis-1))
  return (self.shape[axis]-idx.max(axis=axis, keepdim=keepdim)).cast(dtypes.int32)

argmin ¤

argmin(axis=None, keepdim=False)

Returns the indices of the minimum value of the tensor along the specified axis.

You can pass in axis and keepdim keyword arguments to control the axis along which the minimum is computed and whether the reduced dimensions are retained.

t = Tensor([[1, 0, 2], [5, 4, 3]])
print(t.numpy())
[[1 0 2]
 [5 4 3]]
print(t.argmin().numpy()) # Returns the index of the minimum value in the flattened tensor.
1
print(t.argmin(axis=0).numpy()) # Returns the indices of the minimum values along axis 0.
[0 0 0]
print(t.argmin(axis=1).numpy()) # Returns the indices of the minimum values along axis 1.
[1 2]

Source code in tinygrad/tensor.py
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
def argmin(self, axis=None, keepdim=False):
  """
  Returns the indices of the minimum value of the tensor along the specified axis.

  You can pass in `axis` and `keepdim` keyword arguments to control the axis along
  which the minimum is computed and whether the reduced dimensions are retained.

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor([[1, 0, 2], [5, 4, 3]])
  print(t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.argmin().numpy()) # Returns the index of the minimum value in the flattened tensor.
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.argmin(axis=0).numpy()) # Returns the indices of the minimum values along axis 0.
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.argmin(axis=1).numpy()) # Returns the indices of the minimum values along axis 1.
  ```
  """
  return (-self).argmax(axis=axis, keepdim=keepdim)

Processing¤

avg_pool2d ¤

avg_pool2d(
    kernel_size=(2, 2),
    stride=None,
    dilation=1,
    padding=0,
    count_include_pad=True,
)

Applies average pooling over a tensor.

Note

unlike PyTorch, this implementation is not limited to only 2d pooling and instead works for any number of dimensions.

See: https://paperswithcode.com/method/average-pooling

t = Tensor.arange(25).reshape(1, 1, 5, 5)
print(t.avg_pool2d().numpy())
[[[[ 3.  5.]
   [13. 15.]]]]
print(t.avg_pool2d(padding=1).numpy())
[[[[ 0.    0.75  1.75]
   [ 3.75  9.   11.  ]
   [ 8.75 19.   21.  ]]]]

Source code in tinygrad/tensor.py
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
def avg_pool2d(self, kernel_size=(2,2), stride=None, dilation=1, padding=0, count_include_pad=True):
  """
  Applies average pooling over a tensor.

  NOTE: unlike PyTorch, this implementation is not limited to only 2d pooling and instead works for any number of dimensions.

  See: https://paperswithcode.com/method/average-pooling

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor.arange(25).reshape(1, 1, 5, 5)
  print(t.avg_pool2d().numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.avg_pool2d(padding=1).numpy())
  ```
  """
  padding_, axis = self._padding2d(padding, len(k_ := make_tuple(kernel_size, 2))), tuple(range(-len(k_), 0))
  def pool(x:Tensor) -> Tensor: return x.pad(padding_)._pool(k_, stride if stride is not None else k_, dilation)
  return pool(self).mean(axis=axis) if count_include_pad else pool(self).sum(axis=axis) / pool(self.ones_like()).sum(axis=axis)

max_pool2d ¤

max_pool2d(
    kernel_size=(2, 2), stride=None, dilation=1, padding=0
)

Applies max pooling over a tensor.

Note

unlike PyTorch, this implementation is not limited to only 2d pooling and instead works for any number of dimensions.

See: https://paperswithcode.com/method/max-pooling

t = Tensor.arange(25).reshape(1, 1, 5, 5)
print(t.max_pool2d().numpy())
[[[[ 6  8]
   [16 18]]]]
print(t.max_pool2d(padding=1).numpy())
[[[[ 0  2  4]
   [10 12 14]
   [20 22 24]]]]

Source code in tinygrad/tensor.py
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
def max_pool2d(self, kernel_size=(2,2), stride=None, dilation=1, padding=0):
  """
  Applies max pooling over a tensor.

  NOTE: unlike PyTorch, this implementation is not limited to only 2d pooling and instead works for any number of dimensions.

  See: https://paperswithcode.com/method/max-pooling

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor.arange(25).reshape(1, 1, 5, 5)
  print(t.max_pool2d().numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.max_pool2d(padding=1).numpy())
  ```
  """
  padding_ = self._padding2d(padding, len(k_ := make_tuple(kernel_size, 2)))
  return self.pad(padding_, value=dtypes.min(self.dtype))._pool(k_, stride if stride is not None else k_, dilation).max(tuple(range(-len(k_), 0)))

conv2d ¤

conv2d(
    weight: Tensor,
    bias: Optional[Tensor] = None,
    groups=1,
    stride=1,
    dilation=1,
    padding: int | Tuple[int, ...] = 0,
    acc_dtype: Optional[DTypeLike] = None,
) -> Tensor

Applies a convolution over a tensor with a given weight and optional bias.

Note

unlike PyTorch, this implementation is not limited to only 2d convolutions and instead works for any number of dimensions.

See: https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html

t = Tensor.arange(9).reshape(1, 1, 3, 3)
w = Tensor.ones(1, 1, 2, 2)
print(t.conv2d(w).numpy())
[[[[ 8. 12.]
   [20. 24.]]]]
Source code in tinygrad/tensor.py
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
def conv2d(self, weight:Tensor, bias:Optional[Tensor]=None, groups=1, stride=1, dilation=1, padding:int|Tuple[int, ...]=0,
           acc_dtype:Optional[DTypeLike]=None) -> Tensor:
  """
  Applies a convolution over a tensor with a given `weight` and optional `bias`.

  NOTE: unlike PyTorch, this implementation is not limited to only 2d convolutions and instead works for any number of dimensions.

  See: https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor.arange(9).reshape(1, 1, 3, 3)
  w = Tensor.ones(1, 1, 2, 2)
  print(t.conv2d(w).numpy())
  ```
  """
  if IMAGE: return self.image_conv2d(weight, bias, groups, stride, dilation, padding, acc_dtype)
  (bs,cin_), (cout,cin), HW = self.shape[:2], weight.shape[:2], weight.shape[2:]
  assert groups*cin == cin_ and len(self.shape) == len(weight.shape), f"Input Tensor shape {self.shape} does not match the shape of the weights {weight.shape}. ({groups*cin} vs. {cin_})"  # noqa: E501
  if isinstance(padding, (tuple,list)): assert len(padding) == 2*len(HW) or len(padding) == len(HW), f"Expected padding of length {2*len(HW)} or {len(HW)}, but got {len(padding)} for tensor of shape {self.shape}"  # noqa: E501
  padding_ = self._padding2d(padding, len(HW))

  # conv2d is a pooling op (with padding)
  x = self.pad(padding_)._pool(HW, stride, dilation)   # (bs, groups*cin, oy, ox, H, W)
  rcout, oyx = cout//groups, x.shape[2:-len(HW)]
  if not all(x == 3 for x in HW) or stride != 1 or dilation != 1 or not WINO:
    # normal conv
    x = x.reshape(bs, groups, cin, 1, *oyx, *HW).expand(bs, groups, cin, rcout, *oyx, *HW).permute(0,1,3,*[4+i for i in range(len(oyx))],2,*[4+len(oyx)+i for i in range(len(HW))])  # noqa: E501

    # conv! broadcasted to (bs, groups, rcout, *oyx, cin, *HW)
    ret = (x * weight.reshape(1, groups, rcout, *[1] * len(oyx), cin, *HW)).sum([-1-i for i in range(1+len(oyx))], keepdim=True, acc_dtype=acc_dtype).reshape(bs, cout, *oyx)  # noqa: E501
    return ret if bias is None else ret.add(bias.reshape(1, -1, *[1] * len(HW)))

  HWI, HWO = (6,) * len(HW), (4,) * len(HW)  # F(4x4,3x3) winograd tiles
  winograd_G = [[1/4, 0, 0], [-1/6, -1/6, -1/6], [-1/6, 1/6, -1/6], [1/24, 1/12, 1/6], [1/24, -1/12, 1/6], [0, 0, 1]]
  winograd_Bt = [[4, 0, -5, 0, 1, 0], [0, -4, -4, 1, 1, 0], [0, 4, -4, -1, 1, 0], [0, -2, -1, 2, 1, 0], [0, 2, -1, -2, 1, 0], [0, 4, 0, -5, 0, 1]]
  winograd_At = [[1, 1, 1, 1, 1, 0], [0, 1, -1, 2, -2, 0], [0, 1, 1, 4, 4, 0], [0, 1, -1, 8, -8, 1]] # applying At in pre-order doubles compile time

  # todo: stride == dilation
  # use padding to round up to 4x4 output tiles
  # (bs, cin_, tyx, HWI)
  d = self.pad(sum([[padding_[i*2], padding_[i*2+1] + (-(dim + sum(padding_[i * 2:(i + 1) * 2]) - 2) % 4)] for i, dim in enumerate(self.shape[-len(HW):])], []))._pool(HWI, HWO)  # noqa: E501
  # move HW to the front: # (HWI, bs, cin_, tyx)
  d = d.permute(*range(len(d.shape)-len(HW),len(d.shape)), *range(len(d.shape)-len(HW)))
  tyx = d.shape[-len(HWI):]  # dim of tiling

  g = weight.permute(*range(len(weight.shape)-len(HW),len(weight.shape)), *range(len(weight.shape)-len(HW)))  # move HW to the front

  # compute 6x6 winograd tiles: GgGt, BtdB
  # (HWI, groups * rcout, cin) -> (HWI, bs=1, groups, rcout, cin, tyx=(1,1))
  gfactors = _apply_winograd_matrix(winograd_G, g, len(HW)).reshape(*HWI, 1, groups, rcout, cin, *([1]*len(tyx)))
  # (HWI, bs, cin_, tyx) -> (HWI, bs, groups, 1 ,cin, *tyx)
  dfactors = _apply_winograd_matrix(winograd_Bt, d, len(HW)).reshape(*HWI, bs, groups, 1, cin, *tyx)

  # matmul; sum across cin: (HWI, bs, groups, rcout, *tyx); then HWI -> HWO: (HWO, bs, groups, rcout, *tyx)
  ret = _apply_winograd_matrix(winograd_At, (gfactors * dfactors).sum(axis=-1-len(HW), acc_dtype=acc_dtype), len(HW))

  # interleave tyx and HWO: (bs, groups, rcout, oy, HO, ox, WO)
  ret = ret.permute([*range(len(HW), len(ret.shape)-len(HW)), *[i+o for i in range(len(HW)) for o in [len(ret.shape)-len(HW),0]]])
  # merge groups and rcout, tyx and HWO: (bs, groups, cout, *yx), shrink to final
  ret = ret.reshape(bs, cout, *[c * HWO[i] for i, c in enumerate(tyx)]).shrink(tuple((0, s) for s in [bs, cout, *oyx]))

  return (ret if bias is None else ret.add(bias.reshape(1, -1, *[1 for _ in range(len(HW))]))).contiguous().contiguous_backward()

conv_transpose2d ¤

conv_transpose2d(
    weight: Tensor,
    bias: Optional[Tensor] = None,
    groups=1,
    stride=1,
    dilation=1,
    padding=0,
    output_padding=0,
) -> Tensor

Applies a transposed convolution over a tensor with a given weight and optional bias.

Note

unlike PyTorch, this implementation is not limited to only 2d transposed convolutions and instead works for any number of dimensions.

See: https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose2d.html

t = Tensor.arange(9).reshape(1, 1, 3, 3)
w = Tensor.ones(1, 1, 2, 2)
print(t.conv_transpose2d(w).numpy())
[[[[ 0.  1.  3.  2.]
   [ 3.  8. 12.  7.]
   [ 9. 20. 24. 13.]
   [ 6. 13. 15.  8.]]]]
Source code in tinygrad/tensor.py
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
def conv_transpose2d(self, weight:Tensor, bias:Optional[Tensor]=None, groups=1, stride=1, dilation=1, padding=0, output_padding=0) -> Tensor:
  """
  Applies a transposed convolution over a tensor with a given `weight` and optional `bias`.

  NOTE: unlike PyTorch, this implementation is not limited to only 2d transposed convolutions and instead works for any number of dimensions.

  See: https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose2d.html

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor.arange(9).reshape(1, 1, 3, 3)
  w = Tensor.ones(1, 1, 2, 2)
  print(t.conv_transpose2d(w).numpy())
  ```
  """
  x, w = self, weight.unflatten(0, (groups, -1)).transpose(1, 2).flip(*range(3, len(weight.shape)+1))
  HW = weight.shape[2:]
  stride, dilation, padding, output_padding = [make_tuple(x, len(HW)) for x in (stride, dilation, padding, output_padding)]
  if any(s>1 for s in stride):
    # handle strides: (k) -> reshape -> (k,1) -> pad -> (k,s) -> reshape -> (k*s) -> shrink (k-(s-1))
    x = x.reshape(None, None, *flatten((k,1) for k in x.shape[2:]))
    x = x.pad((None, None, *flatten((None,(0,s-1)) for s in stride)))
    x = x.reshape(None, None, *[k*s for k,s in zip(x.shape[2::2], stride)])
    x = x.shrink((None, None, *[(0,k-(s-1)) for k,s in zip(x.shape[2:], stride)]))
  padding = flatten((((k-1)*d-p,(k-1)*d-p+op) for k,d,p,op in reversed(list(zip(HW, dilation, padding, output_padding)))))
  return x.conv2d(w.flatten(end_dim=1), groups=groups, bias=bias, dilation=dilation, padding=padding)

dot ¤

dot(
    w: Tensor, acc_dtype: Optional[DTypeLike] = None
) -> Tensor

Performs dot product between two tensors. If w is 1-D, it's a sum product over the last axis of self and w. If w is N-D with N>=2, it's a sum product over the last axis of self and the second-to-last axis of w.

You can pass in the optional acc_dtype keyword argument to control the data type of the accumulation.

a = Tensor([1, 2, 3])
b = Tensor([1, 1, 0])
print(a.dot(b).numpy())
3
a = Tensor([[1, 2], [3, 4]])
b = Tensor([[5, 6], [7, 8]])
print(a.dot(b).numpy())
[[19 22]
 [43 50]]

Source code in tinygrad/tensor.py
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
def dot(self, w:Tensor, acc_dtype:Optional[DTypeLike]=None) -> Tensor:

  """
  Performs dot product between two tensors.
  If `w` is 1-D, it's a sum product over the last axis of `self` and `w`.
  If `w` is N-D with N>=2, it's a sum product over the last axis of `self` and the second-to-last axis of `w`.

  You can pass in the optional `acc_dtype` keyword argument to control the data type of the accumulation.

  ```python exec="true" source="above" session="tensor" result="python"
  a = Tensor([1, 2, 3])
  b = Tensor([1, 1, 0])
  print(a.dot(b).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  a = Tensor([[1, 2], [3, 4]])
  b = Tensor([[5, 6], [7, 8]])
  print(a.dot(b).numpy())
  ```
  """
  if IMAGE: return self.image_dot(w, acc_dtype)
  x, dx, dw = self, self.ndim, w.ndim
  if not (dx > 0 and dw > 0): raise RuntimeError(f"both tensors need to be at least 1D, got {dx}D and {dw}D")
  if x.shape[-1] != w.shape[axis_w:=-min(w.ndim,2)]: raise RuntimeError(f"cannot dot {x.shape} and {w.shape}")
  x = x.reshape(*x.shape[0:-1], *[1]*min(dx-1, dw-1, 1), x.shape[-1])
  w = w.reshape(*w.shape[0:-2], *[1]*min(dx-1, dw-1, 1), *w.shape[axis_w:]).transpose(-1, axis_w)
  return (x*w).sum(-1, acc_dtype=acc_dtype).cast(least_upper_dtype(x.dtype, w.dtype) if acc_dtype is None else acc_dtype)

matmul ¤

matmul(
    x: Tensor,
    reverse=False,
    acc_dtype: Optional[DTypeLike] = None,
) -> Tensor

Performs matrix multiplication between two tensors.

You can pass in the reverse keyword argument to control the order of the matrix multiplication. You can pass in the optional acc_dtype keyword argument to control the data type of the accumulation.

a = Tensor([[1, 2], [3, 4]])
b = Tensor([[5, 6], [7, 8]])
print(a.matmul(b).numpy())
[[19 22]
 [43 50]]
Source code in tinygrad/tensor.py
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
def matmul(self, x:Tensor, reverse=False, acc_dtype:Optional[DTypeLike]=None) -> Tensor:
  """
  Performs matrix multiplication between two tensors.

  You can pass in the `reverse` keyword argument to control the order of the matrix multiplication.
  You can pass in the optional `acc_dtype` keyword argument to control the data type of the accumulation.

  ```python exec="true" source="above" session="tensor" result="python"
  a = Tensor([[1, 2], [3, 4]])
  b = Tensor([[5, 6], [7, 8]])
  print(a.matmul(b).numpy())
  ```
  """
  return x.dot(self, acc_dtype=acc_dtype) if reverse else self.dot(x, acc_dtype=acc_dtype)

einsum staticmethod ¤

einsum(
    formula: str,
    *operands: Tensor | Sequence[Tensor],
    acc_dtype: Optional[DTypeLike] = None
) -> Tensor

Sums the product of the elements of the input tensors according to a formula based on the Einstein summation convention.

See: https://pytorch.org/docs/stable/generated/torch.einsum.html

x = Tensor([[1, 2], [3, 4]])
y = Tensor([[5, 6], [7, 8]])
print(Tensor.einsum("ij,ij->", x, y).numpy())
70
Source code in tinygrad/tensor.py
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
@staticmethod
def einsum(formula:str, *operands:Tensor|Sequence[Tensor], acc_dtype:Optional[DTypeLike]=None) -> Tensor:
  """
  Sums the product of the elements of the input tensors according to a formula based on the Einstein summation convention.

  See: https://pytorch.org/docs/stable/generated/torch.einsum.html

  ```python exec="true" source="above" session="tensor" result="python"
  x = Tensor([[1, 2], [3, 4]])
  y = Tensor([[5, 6], [7, 8]])
  print(Tensor.einsum("ij,ij->", x, y).numpy())
  ```
  """
  def parse_formula(formula:str, *operands:Tensor):
    if "..." in (formula := formula.replace(" ", "")):
      ell_chars, ell_longest = "".join(set(string.ascii_letters) - set(formula)), 0
      for i, inp in enumerate(filter(lambda x: "..." in x, inputs := formula.split("->")[0].split(","))):
        if (ell_count := max(operands[i].ndim, 1) - (len(inp) - len("..."))) > ell_longest: ell_longest = ell_count
        inputs[i] = inp.replace("...", ell_chars[-ell_count:])
      inputs_str, out_ellipse = ",".join(inputs), ell_chars[-ell_longest:]
      return (inputs_str, formula.split("->")[1].replace("...", out_ellipse)) if "->" in formula else \
        (inputs_str, out_ellipse + ''.join(sorted(c for c in inputs_str if inputs_str.count(c) == 1 and c.isalpha() and c not in out_ellipse)))
    return formula.split("->") if "->" in formula else (formula, ''.join(c for c in sorted(formula) if formula.count(c) == 1 and c.isalpha()))

  xs:Tuple[Tensor, ...] = argfix(*operands)
  inputs_str, output = parse_formula(formula, *xs)
  inputs = inputs_str.split(",")
  assert len(xs) == len(inputs), f"number of inputs doesn't match number of operands in formula, expected {len(inputs)}, got {len(xs)}"

  # map the value of each letter in the formula
  letter_val = sorted(merge_dicts([dict(zip(letters, tensor.shape)) for letters, tensor in zip(inputs, xs)]).items())

  xs_:List[Tensor] = []
  lhs = [sorted(enumerate(s), key=lambda e:e[1]) for s in inputs]
  for x,(order,letters) in zip(xs, [list(zip(*l)) for l in lhs]):
    # permute to the sorted letter order, then reshape/expand to create dimensions for the missing letters
    xs_.append(x.permute(order).reshape([val if letter in letters else 1 for letter,val in letter_val]).expand([val for _,val in letter_val]))

  # ordinal encode the output alphabet
  rhs_order = argsort(argsort(list(output)))

  # sum over all axes that's not in the output, then permute to the output order
  return functools.reduce(lambda a,b:a*b, xs_) \
    .sum(axis=[axis for axis,(letter,_) in enumerate(letter_val) if letter not in output], acc_dtype=acc_dtype).permute(rhs_order)

cumsum ¤

cumsum(axis: int = 0) -> Tensor

Computes the cumulative sum of the tensor along the specified axis.

You can pass in the axis keyword argument to control the axis along which the cumulative sum is computed.

t = Tensor.ones(2, 3)
print(t.numpy())
[[1. 1. 1.]
 [1. 1. 1.]]
print(t.cumsum(1).numpy())
[[1. 2. 3.]
 [1. 2. 3.]]

Source code in tinygrad/tensor.py
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
def cumsum(self, axis:int=0) -> Tensor:
  """
  Computes the cumulative sum of the tensor along the specified axis.

  You can pass in the `axis` keyword argument to control the axis along which the cumulative sum is computed.

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor.ones(2, 3)
  print(t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.cumsum(1).numpy())
  ```
  """
  axis = self._resolve_dim(axis)
  if self.ndim == 0 or 0 in self.shape: return self
  # TODO: someday the optimizer will find this on it's own
  # for now this is a two stage cumsum
  SPLIT = 256
  if not isinstance(s:=self.shape[axis], int) or s <= SPLIT*2: return self._cumsum(axis)
  ret = self.transpose(axis,-1).pad((round_up(s, SPLIT)-s, 0)).unflatten(-1, (-1, SPLIT))._cumsum(-1)
  base_add = ret[..., -1]._cumsum(-1, _first_zero=True)
  base_add = base_add.unsqueeze(-1).expand(*base_add.shape, ret.shape[-1])
  def fix(x:Tensor): return x.flatten(start_dim=-2)[..., -s:].transpose(axis,-1)
  return fix(ret) + fix(base_add)

triu ¤

triu(diagonal: int = 0) -> Tensor

Returns the upper triangular part of the tensor, the other elements are set to 0.

The argument diagonal determines which diagonal is on the boundary. diagonal = 0 means the main diagonal. Positive diagonal means above the main diagonal, and negative diagonal means below the main diagonal.

t = Tensor([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
print(t.numpy())
[[ 1  2  3  4]
 [ 5  6  7  8]
 [ 9 10 11 12]]
print(t.triu(diagonal=0).numpy())
[[ 1  2  3  4]
 [ 0  6  7  8]
 [ 0  0 11 12]]
print(t.triu(diagonal=1).numpy())
[[ 0  2  3  4]
 [ 0  0  7  8]
 [ 0  0  0 12]]
print(t.triu(diagonal=-1).numpy())
[[ 1  2  3  4]
 [ 5  6  7  8]
 [ 0 10 11 12]]

Source code in tinygrad/tensor.py
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
def triu(self, diagonal:int=0) -> Tensor:
  """
  Returns the upper triangular part of the tensor, the other elements are set to 0.

  The argument `diagonal` determines which diagonal is on the boundary. `diagonal = 0` means the main diagonal.
  Positive `diagonal` means above the main diagonal, and negative `diagonal` means below the main diagonal.

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
  print(t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.triu(diagonal=0).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.triu(diagonal=1).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.triu(diagonal=-1).numpy())
  ```
  """
  return Tensor._tri(self.shape[-2], self.shape[-1], diagonal=diagonal, device=self.device, dtype=dtypes.bool).where(self, 0).cast(self.dtype)

tril ¤

tril(diagonal: int = 0) -> Tensor

Returns the lower triangular part of the tensor, the other elements are set to 0.

The argument diagonal determines which diagonal is on the boundary. diagonal = 0 means the main diagonal. Positive diagonal means above the main diagonal, and negative diagonal means below the main diagonal.

t = Tensor([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
print(t.numpy())
[[ 1  2  3  4]
 [ 5  6  7  8]
 [ 9 10 11 12]]
print(t.tril(diagonal=0).numpy())
[[ 1  0  0  0]
 [ 5  6  0  0]
 [ 9 10 11  0]]
print(t.tril(diagonal=1).numpy())
[[ 1  2  0  0]
 [ 5  6  7  0]
 [ 9 10 11 12]]
print(t.tril(diagonal=-1).numpy())
[[ 0  0  0  0]
 [ 5  0  0  0]
 [ 9 10  0  0]]

Source code in tinygrad/tensor.py
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
def tril(self, diagonal:int=0) -> Tensor:
  """
  Returns the lower triangular part of the tensor, the other elements are set to 0.

  The argument `diagonal` determines which diagonal is on the boundary. `diagonal = 0` means the main diagonal.
  Positive `diagonal` means above the main diagonal, and negative `diagonal` means below the main diagonal.

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
  print(t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.tril(diagonal=0).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.tril(diagonal=1).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.tril(diagonal=-1).numpy())
  ```
  """
  return Tensor._tri(self.shape[-2], self.shape[-1], diagonal=diagonal+1, device=self.device, dtype=dtypes.bool).where(0, self).cast(self.dtype)

interpolate ¤

interpolate(
    size: Tuple[int, ...],
    mode: str = "linear",
    align_corners: bool = False,
) -> Tensor

Downsamples or Upsamples to the input size, accepts 0 to N batch dimensions.

The interpolation algorithm is selected with mode which currently only supports linear, nearest and nearest-exact. To run bilinear or trilinear, pass in a 2D or 3D size.

t = Tensor([[1, 2, 3, 4], [21, 22, 23, 24], [41, 42, 43, 44]])
print(t.numpy())
[[ 1  2  3  4]
 [21 22 23 24]
 [41 42 43 44]]
print(t.interpolate(size=(2,3), mode="linear").numpy())
[[ 6  7  8]
 [36 37 38]]

Source code in tinygrad/tensor.py
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
def interpolate(self, size:Tuple[int, ...], mode:str="linear", align_corners:bool=False) -> Tensor:
  """
  Downsamples or Upsamples to the input `size`, accepts 0 to N batch dimensions.

  The interpolation algorithm is selected with `mode` which currently only supports `linear`, `nearest` and `nearest-exact`.
  To run `bilinear` or `trilinear`, pass in a 2D or 3D size.

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor([[1, 2, 3, 4], [21, 22, 23, 24], [41, 42, 43, 44]])
  print(t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.interpolate(size=(2,3), mode="linear").numpy())
  ```
  """
  assert isinstance(size, (tuple,list)) and all_int(size) and 0 < len(size) <= self.ndim, f"invalid {size=}"
  assert mode in ("linear", "nearest", "nearest-exact"), "only supports linear, nearest or nearest-exact interpolate"
  assert not (align_corners and mode != "linear"), "align_corners option can only be set with the interpolating mode linear"
  x, expand = self, list(self.shape)
  for i in range(-1,-len(size)-1,-1):
    scale = (self.shape[i] - int(align_corners)) / (size[i] - int(align_corners))
    arr, reshape = Tensor.arange(size[i], dtype=dtypes.float32, device=self.device), [1] * self.ndim
    reshape[i] = expand[i] = size[i]
    if mode == "linear":
      index = (scale*arr if align_corners else (scale*(arr+0.5))-0.5).clip(0, self.shape[i]-1)
      low, high, perc = [y.reshape(reshape).expand(expand) for y in (index.floor(), index.ceil(), index - index.floor())]
      x = x.gather(i, low).lerp(x.gather(i, high), perc)
    else:
      index = (scale*(arr+0.5) if mode=="nearest-exact" else scale*arr).cast(dtypes.int32).reshape(reshape).expand(expand)
      x = x.gather(i, index)
  return x.cast(self.dtype)

Neural Network (functional)¤

linear ¤

linear(weight: Tensor, bias: Optional[Tensor] = None)

Applies a linear transformation to self using weight and bias.

See: https://pytorch.org/docs/stable/generated/torch.nn.Linear.html

t = Tensor([[1, 2], [3, 4]])
weight = Tensor([[1, 2], [3, 4]])
bias = Tensor([1, 2])
print(t.linear(weight, bias).numpy())
[[ 8 12]
 [16 24]]
Source code in tinygrad/tensor.py
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
def linear(self, weight:Tensor, bias:Optional[Tensor]=None):
  """
  Applies a linear transformation to `self` using `weight` and `bias`.

  See: https://pytorch.org/docs/stable/generated/torch.nn.Linear.html

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor([[1, 2], [3, 4]])
  weight = Tensor([[1, 2], [3, 4]])
  bias = Tensor([1, 2])
  print(t.linear(weight, bias).numpy())
  ```
  """
  x = self.mul(weight) if len(weight.shape) == 1 else self.dot(weight)
  return x.add(bias) if bias is not None else x

sequential ¤

sequential(ll: List[Callable[[Tensor], Tensor]])

Applies a sequence of functions to self chaining the output of each function to the input of the next.

t = Tensor([1, 2, 3])
print(t.sequential([lambda x: x * 2, lambda x: x + 1]).numpy())
[3 5 7]
Source code in tinygrad/tensor.py
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
def sequential(self, ll:List[Callable[[Tensor], Tensor]]):
  """
  Applies a sequence of functions to `self` chaining the output of each function to the input of the next.

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor([1, 2, 3])
  print(t.sequential([lambda x: x * 2, lambda x: x + 1]).numpy())
  ```
  """
  return functools.reduce(lambda x,f: f(x), ll, self)

layernorm ¤

layernorm(
    axis: Union[int, Tuple[int, ...]] = -1,
    eps: float = 1e-05,
) -> Tensor

Applies Layer Normalization over a mini-batch of inputs.

t = Tensor.randn(8, 10, 16) * 2 + 8
print(t.mean().item(), t.std().item())
7.923057556152344 2.0072731971740723
t = t.layernorm()
print(t.mean().item(), t.std().item())
-2.184478153921532e-09 1.0003893375396729

Source code in tinygrad/tensor.py
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
def layernorm(self, axis:Union[int,Tuple[int,...]]=-1, eps:float=1e-5) -> Tensor:
  """
  Applies Layer Normalization over a mini-batch of inputs.

  - Described: https://paperswithcode.com/method/layer-normalization
  - Paper: https://arxiv.org/abs/1607.06450v1

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor.randn(8, 10, 16) * 2 + 8
  print(t.mean().item(), t.std().item())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  t = t.layernorm()
  print(t.mean().item(), t.std().item())
  ```
  """
  y = (self - self.mean(axis, keepdim=True))
  return y.mul((y*y).mean(axis, keepdim=True).add(eps).rsqrt())

batchnorm ¤

batchnorm(
    weight: Optional[Tensor],
    bias: Optional[Tensor],
    mean: Tensor,
    invstd: Tensor,
    axis: Union[int, Tuple[int, ...]] = 1,
) -> Tensor

Applies Batch Normalization over a mini-batch of inputs.

t = Tensor.randn(8, 4, 16, 16) * 2 + 8
print(t.mean().item(), t.std().item())
8.030435562133789 1.9699469804763794
t = t.batchnorm(None, None, t.mean(axis=(0,2,3)), t.var(axis=(0,2,3)).add(1e-5).rsqrt())
print(t.mean().item(), t.std().item())
1.7121278688136954e-06 0.9998164176940918

Source code in tinygrad/tensor.py
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
def batchnorm(self, weight:Optional[Tensor], bias:Optional[Tensor], mean:Tensor, invstd:Tensor, axis:Union[int,Tuple[int,...]]=1) -> Tensor:
  """
  Applies Batch Normalization over a mini-batch of inputs.

  - Described: https://paperswithcode.com/method/batch-normalization
  - Paper: https://arxiv.org/abs/1502.03167

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor.randn(8, 4, 16, 16) * 2 + 8
  print(t.mean().item(), t.std().item())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  t = t.batchnorm(None, None, t.mean(axis=(0,2,3)), t.var(axis=(0,2,3)).add(1e-5).rsqrt())
  print(t.mean().item(), t.std().item())
  ```
  """
  axis_ = argfix(axis)
  shape = tuple(s if ax in axis_ else 1 for ax, s in enumerate(self.shape))
  x = self - mean.reshape(shape)
  if weight is not None: x = x * weight.reshape(shape)
  ret = x.mul(invstd.reshape(shape) if len(invstd.shape) == len(axis_) else invstd)
  return (ret + bias.reshape(shape)) if bias is not None else ret

dropout ¤

dropout(p=0.5) -> Tensor

Applies dropout to self.

Note

dropout is only applied when Tensor.training is True.

Tensor.manual_seed(42)
t = Tensor.randn(2, 2)
with Tensor.train():
  print(t.dropout().numpy())
[[ 0.      2.17  ]
 [ 0.     -0.1682]]
Source code in tinygrad/tensor.py
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
def dropout(self, p=0.5) -> Tensor:
  """
  Applies dropout to `self`.

  NOTE: dropout is only applied when `Tensor.training` is `True`.

  - Described: https://paperswithcode.com/method/dropout
  - Paper: https://jmlr.org/papers/v15/srivastava14a.html

  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  t = Tensor.randn(2, 2)
  with Tensor.train():
    print(t.dropout().numpy())
  ```
  """
  if not Tensor.training or p == 0: return self
  return (Tensor.rand_like(self, requires_grad=False, dtype=dtypes.default_float, contiguous=False) >= p).contiguous().where(self, 0) / (1.0 - p)

one_hot ¤

one_hot(num_classes: int = -1) -> Tensor

Converts self to a one-hot tensor.

num_classes defaults to -1, which means num_classes will be inferred as max(self) + 1.

t = Tensor([0, 1, 3, 3, 4])
print(t.one_hot(5).numpy())
[[1 0 0 0 0]
 [0 1 0 0 0]
 [0 0 0 1 0]
 [0 0 0 1 0]
 [0 0 0 0 1]]
Source code in tinygrad/tensor.py
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
def one_hot(self, num_classes:int=-1) -> Tensor:
  """
  Converts `self` to a one-hot tensor.

  `num_classes` defaults to -1, which means num_classes will be inferred as max(self) + 1.

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor([0, 1, 3, 3, 4])
  print(t.one_hot(5).numpy())
  ```
  """
  if num_classes == -1: num_classes = (self.max()+1).item()
  return (self[..., None] == Tensor.arange(num_classes, requires_grad=False, device=self.device)).where(1, 0)

scaled_dot_product_attention ¤

scaled_dot_product_attention(
    key: Tensor,
    value: Tensor,
    attn_mask: Optional[Tensor] = None,
    dropout_p: float = 0.0,
    is_causal: bool = False,
) -> Tensor

Computes scaled dot-product attention. self is the query tensor, key is the key tensor, and value is the value tensor.

q = Tensor.randn(2, 4, 8)
k = Tensor.randn(2, 4, 8)
v = Tensor.randn(2, 4, 8)
print(q.scaled_dot_product_attention(k, v).numpy())
[[[-0.1425 -0.1433 -0.3625  0.8853 -0.3129  1.0271 -0.0019  0.2445]
  [-0.7137  0.2617  1.1393  0.692   0.0461  0.1132  0.391  -0.3563]
  [ 0.4718  0.6791  0.8956  0.9387 -0.7198  0.753   0.5702  0.2661]
  [-1.0183  0.005   0.9208  0.6447  0.2658  0.0411  0.2314 -0.4636]]

 [[ 0.2928 -0.3364 -0.1937 -0.0755 -0.6196 -0.7339  0.8431 -0.3794]
  [ 0.5915  0.3565 -0.6987  0.241   0.2624 -0.1074 -0.3026 -0.3574]
  [ 0.3176 -0.4436 -0.3136 -0.5334 -0.5756 -0.851   0.9595 -0.4201]
  [ 0.4378  0.0234 -0.0984  0.4847 -0.3579 -0.3998  0.3781 -0.2338]]]
Source code in tinygrad/tensor.py
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
def scaled_dot_product_attention(self, key:Tensor, value:Tensor, attn_mask:Optional[Tensor]=None,
                                 dropout_p:float=0.0, is_causal:bool=False) -> Tensor:
  """
  Computes scaled dot-product attention.
  `self` is the query tensor, `key` is the key tensor, and `value` is the value tensor.

  - Described: https://paperswithcode.com/method/scaled
  - Paper: https://arxiv.org/abs/1706.03762v7

  ```python exec="true" source="above" session="tensor" result="python"
  q = Tensor.randn(2, 4, 8)
  k = Tensor.randn(2, 4, 8)
  v = Tensor.randn(2, 4, 8)
  print(q.scaled_dot_product_attention(k, v).numpy())
  ```
  """
  # NOTE: it also works when `key` and `value` have symbolic shape.
  assert all_int(self.shape), f"does not support symbolic shape {self.shape}"
  if is_causal: attn_mask = Tensor.ones(self.shape[-2], key.shape[-2], requires_grad=False, device=self.device).tril(0).cast(dtypes.bool)
  if attn_mask is not None and attn_mask.dtype == dtypes.bool: attn_mask = (attn_mask == 0).where(-float("inf"), 0)
  qk = self.matmul(key.transpose(-2,-1), acc_dtype=least_upper_dtype(self.dtype, key.dtype, dtypes.float32)) / math.sqrt(self.shape[-1])
  return ((qk+attn_mask) if attn_mask is not None else qk).softmax(-1).cast(self.dtype).dropout(dropout_p) @ value

binary_crossentropy ¤

binary_crossentropy(
    Y: Tensor, reduction: ReductionStr = "mean"
) -> Tensor

Computes the binary cross-entropy loss between self and Y.

See: https://pytorch.org/docs/stable/generated/torch.nn.BCELoss.html

t = Tensor([0.1, 0.9, 0.2])
Y = Tensor([0, 1, 0])
print(t.binary_crossentropy(Y).item())
0.14462155103683472
Source code in tinygrad/tensor.py
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
def binary_crossentropy(self, Y:Tensor, reduction:ReductionStr="mean") -> Tensor:
  """
  Computes the binary cross-entropy loss between `self` and `Y`.

  See: https://pytorch.org/docs/stable/generated/torch.nn.BCELoss.html

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor([0.1, 0.9, 0.2])
  Y = Tensor([0, 1, 0])
  print(t.binary_crossentropy(Y).item())
  ```
  """
  return (-Y*self.log() - (1-Y)*(1-self).log())._do_reduction(reduction)

binary_crossentropy_logits ¤

binary_crossentropy_logits(
    Y: Tensor, reduction: ReductionStr = "mean"
) -> Tensor

Computes the binary cross-entropy loss between self and Y where self is logits.

See: https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html

t = Tensor([-1, 2, -3])
Y = Tensor([0, 1, 0])
print(t.binary_crossentropy_logits(Y).item())
0.16292567551136017
Source code in tinygrad/tensor.py
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
def binary_crossentropy_logits(self, Y:Tensor, reduction:ReductionStr="mean") -> Tensor:
  """
  Computes the binary cross-entropy loss between `self` and `Y` where `self` is logits.

  See: https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor([-1, 2, -3])
  Y = Tensor([0, 1, 0])
  print(t.binary_crossentropy_logits(Y).item())
  ```
  """
  return (self.maximum(0) - Y * self + (1 + self.abs().neg().exp()).log())._do_reduction(reduction)

sparse_categorical_crossentropy ¤

sparse_categorical_crossentropy(
    Y: Tensor,
    ignore_index: int = -1,
    label_smoothing=0.0,
    reduction: ReductionStr = "mean",
) -> Tensor

Computes the sparse categorical cross-entropy loss between self and Y.

Note

self is logits and Y is the target labels. NOTE: unlike PyTorch, this function expects the class axis to be -1

See: https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html

t = Tensor([[-1, 2, -3], [1, -2, 3]])
Y = Tensor([1, 2])
print(t.sparse_categorical_crossentropy(Y).item())
0.09391524642705917
Source code in tinygrad/tensor.py
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
def sparse_categorical_crossentropy(self, Y:Tensor, ignore_index:int=-1, label_smoothing=0.0, reduction:ReductionStr="mean") -> Tensor:
  """
  Computes the sparse categorical cross-entropy loss between `self` and `Y`.

  NOTE: `self` is logits and `Y` is the target labels.
  NOTE: unlike PyTorch, this function expects the class axis to be -1

  See: https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor([[-1, 2, -3], [1, -2, 3]])
  Y = Tensor([1, 2])
  print(t.sparse_categorical_crossentropy(Y).item())
  ```
  """
  assert 0.0 <= label_smoothing <= 1.0, "label_smoothing must be in [0.0, 1.0]"
  assert reduction in ("mean", "sum", "none"), "reduction must be one of ['mean', 'sum', 'none']"
  log_probs, loss_mask = self.log_softmax(), (Y != ignore_index) if ignore_index != -1 else Y.ones_like(dtype=dtypes.bool)
  y_counter = Tensor.arange(self.shape[-1], requires_grad=False, device=self.device).unsqueeze(0).expand(Y.numel(), self.shape[-1])
  y = ((y_counter == Y.flatten().reshape(-1, 1)) * loss_mask.reshape(-1, 1)).reshape(*Y.shape, self.shape[-1])
  smoothing = label_smoothing * (log_probs.mean(-1) * loss_mask)
  unreduced = ((1 - label_smoothing) * (log_probs * y).sum(-1) + smoothing)
  # NOTE: because of ignore_index, we can't use Tensor.mean (so can't use `_do_reduction` here)
  return -(unreduced.sum() / loss_mask.sum() if reduction == "mean" else (unreduced.sum() if reduction == "sum" else unreduced))

cross_entropy ¤

cross_entropy(
    Y: Tensor,
    reduction: ReductionStr = "mean",
    label_smoothing: float = 0.0,
) -> Tensor

Compute the cross entropy loss between input logits and target.

Note

self are logits and Y are the target labels or class probabilities.

See: https://pytorch.org/docs/stable/generated/torch.nn.functional.cross_entropy.html

t = Tensor([[-1, 2, -3], [1, -2, 3]])
Y = Tensor([1, 2])
print(t.cross_entropy(Y).item())
0.09391524642705917
t = Tensor([[-1, 2, -3], [1, -2, 3]])
Y = Tensor([1, 2])
print(t.cross_entropy(Y, reduction='none').numpy())
[0.055  0.1328]

Source code in tinygrad/tensor.py
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
def cross_entropy(self, Y:Tensor, reduction:ReductionStr="mean", label_smoothing:float=0.0) -> Tensor:
  """
  Compute the cross entropy loss between input logits and target.

  NOTE: `self` are logits and `Y` are the target labels or class probabilities.

  See: https://pytorch.org/docs/stable/generated/torch.nn.functional.cross_entropy.html

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor([[-1, 2, -3], [1, -2, 3]])
  Y = Tensor([1, 2])
  print(t.cross_entropy(Y).item())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor([[-1, 2, -3], [1, -2, 3]])
  Y = Tensor([1, 2])
  print(t.cross_entropy(Y, reduction='none').numpy())
  ```
  """
  assert 0.0 <= label_smoothing <= 1.0, "label_smoothing must be in [0.0, 1.0]"
  Y = Y.one_hot(num_classes=cast(int, self.shape[1])) if Y.ndim < 2 else Y
  Y = (1 - label_smoothing)*Y + label_smoothing / cast(int, Y.shape[1])
  ret = -self.log_softmax(axis=1).mul(Y).sum(axis=1)
  return ret._do_reduction(reduction)

nll_loss ¤

nll_loss(
    Y: Tensor,
    weight: Optional[Tensor] = None,
    ignore_index: Optional[int] = None,
    reduction: ReductionStr = "mean",
) -> Tensor

Compute the negative log likelihood loss between log-probabilities and target labels.

Note

self is log-probabilities and Y is the Y labels or class probabilities.

See: https://pytorch.org/docs/stable/generated/torch.nn.functional.nll_loss.html

t = Tensor([[-1, 2, -3], [1, -2, 3]])
Y = Tensor([1, 2])
print(t.log_softmax().nll_loss(Y).item())
0.09391524642705917
t = Tensor([[-1, 2, -3], [1, -2, 3]])
Y = Tensor([1, 2])
print(t.log_softmax().nll_loss(Y, reduction='none').numpy())
[0.055  0.1328]

Source code in tinygrad/tensor.py
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
def nll_loss(self, Y:Tensor, weight:Optional[Tensor]=None, ignore_index:Optional[int]=None, reduction:ReductionStr="mean") -> Tensor:
  """
  Compute the negative log likelihood loss between log-probabilities and target labels.

  NOTE: `self` is log-probabilities and `Y` is the Y labels or class probabilities.

  See: https://pytorch.org/docs/stable/generated/torch.nn.functional.nll_loss.html

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor([[-1, 2, -3], [1, -2, 3]])
  Y = Tensor([1, 2])
  print(t.log_softmax().nll_loss(Y).item())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor([[-1, 2, -3], [1, -2, 3]])
  Y = Tensor([1, 2])
  print(t.log_softmax().nll_loss(Y, reduction='none').numpy())
  ```
  """
  weight = Tensor.ones_like(Y, requires_grad=False) if weight is None else weight[Y]
  masked_weight = weight if ignore_index is None else weight * (Y != ignore_index)
  nll = -self.gather(1, Y.unsqueeze(1)).squeeze(1) * masked_weight
  return nll.sum() / masked_weight.sum() if reduction == "mean" else nll._do_reduction(reduction)