Complex Ops
Reduce¤
sum
¤
sum(
axis: Optional[Union[int, Sequence[int]]] = None,
keepdim=False,
acc_dtype: Optional[DTypeLike] = None,
)
Returns the sum of the elements of the tensor along the specified axis or axes.
You can pass in axis
and keepdim
keyword arguments to control the axis along
which the maximum is computed and whether the reduced dimensions are retained.
You can pass in acc_dtype
keyword argument to control the data type of the accumulation.
If not specified, the accumulation data type is chosen based on the input tensor's data type.
t = Tensor.arange(6).reshape(2, 3)
print(t.numpy())
[[0 1 2]
[3 4 5]]
print(t.sum().numpy())
15
print(t.sum(axis=0).numpy())
[3 5 7]
print(t.sum(axis=1).numpy())
[ 3 12]
Source code in tinygrad/tensor.py
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 |
|
prod
¤
prod(
axis: Optional[Union[int, Sequence[int]]] = None,
keepdim=False,
acc_dtype: Optional[DTypeLike] = None,
)
Returns the product of the elements of the tensor along the specified axis or axes.
You can pass in axis
and keepdim
keyword arguments to control the axis along
which the maximum is computed and whether the reduced dimensions are retained.
You can pass in acc_dtype
keyword argument to control the data type of the accumulation.
If not specified, the accumulation data type is chosen based on the input tensor's data type.
t = Tensor([-1, -2, -3, 1, 2, 3]).reshape(2, 3)
print(t.numpy())
[[-1 -2 -3]
[ 1 2 3]]
print(t.prod().numpy())
-36
print(t.prod(axis=0).numpy())
[-1 -4 -9]
print(t.prod(axis=1).numpy())
[-6 6]
Source code in tinygrad/tensor.py
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 |
|
max
¤
Returns the maximum value of the tensor along the specified axis or axes.
You can pass in axis
and keepdim
keyword arguments to control the axis along
which the maximum is computed and whether the reduced dimensions are retained.
t = Tensor([[1, 0, 2], [5, 4, 3]])
print(t.numpy())
[[1 0 2]
[5 4 3]]
print(t.max().numpy())
5
print(t.max(axis=0).numpy())
[5 4 3]
print(t.max(axis=1, keepdim=True).numpy())
[[2]
[5]]
Source code in tinygrad/tensor.py
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 |
|
min
¤
Returns the minimum value of the tensor along the specified axis or axes.
You can pass in axis
and keepdim
keyword arguments to control the axis along
which the minimum is computed and whether the reduced dimensions are retained.
t = Tensor([[1, 0, 2], [5, 4, 3]])
print(t.numpy())
[[1 0 2]
[5 4 3]]
print(t.min().numpy())
0
print(t.min(axis=0).numpy())
[1 0 2]
print(t.min(axis=1, keepdim=True).numpy())
[[0]
[3]]
Source code in tinygrad/tensor.py
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 |
|
any
¤
Tests if any element evaluates to True
along the specified axis or axes.
You can pass in axis
and keepdim
keyword arguments to control the reduce axis and whether the reduced dimensions are retained.
t = Tensor([[True, True], [True, False], [False, False]])
print(t.numpy())
[[ True True]
[ True False]
[False False]]
print(t.any().numpy())
True
print(t.any(axis=0).numpy())
[ True True]
print(t.any(axis=1, keepdim=True).numpy())
[[ True]
[ True]
[False]]
Source code in tinygrad/tensor.py
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 |
|
all
¤
Tests if all element evaluates to True
along the specified axis or axes.
You can pass in axis
and keepdim
keyword arguments to control the reduce axis and whether the reduced dimensions are retained.
t = Tensor([[True, True], [True, False], [False, False]])
print(t.numpy())
[[ True True]
[ True False]
[False False]]
print(t.all().numpy())
False
print(t.all(axis=0).numpy())
[False False]
print(t.all(axis=1, keepdim=True).numpy())
[[ True]
[False]
[False]]
Source code in tinygrad/tensor.py
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 |
|
mean
¤
Returns the mean value of the tensor along the specified axis or axes.
You can pass in axis
and keepdim
keyword arguments to control the axis along
which the mean is computed and whether the reduced dimensions are retained.
Tensor.manual_seed(42)
t = Tensor.normal(2, 3, mean=2.5, std=0.5)
print(t.numpy())
[[2.9889 2.7339 2.7763]
[2.3356 2.0722 2.6376]]
print(t.mean().numpy())
2.5907671
print(t.mean(axis=0).numpy())
[2.6623 2.4031 2.707 ]
print(t.mean(axis=1).numpy())
[2.833 2.3485]
Source code in tinygrad/tensor.py
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 |
|
var
¤
Returns the variance of the tensor along the specified axis or axes.
You can pass in axis
, keepdim
, and correction
keyword arguments to control the axis along
which the variance is computed, whether the reduced dimensions are retained, and the Bessel's correction applied.
Tensor.manual_seed(42)
t = Tensor.normal(2, 3, mean=2.5, std=0.5)
print(t.numpy())
[[2.9889 2.7339 2.7763]
[2.3356 2.0722 2.6376]]
print(t.var().numpy())
0.109925404
print(t.var(axis=0).numpy())
[0.2134 0.2189 0.0096]
print(t.var(axis=1).numpy())
[0.0187 0.08 ]
Source code in tinygrad/tensor.py
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 |
|
std
¤
Returns the standard deviation of the tensor along the specified axis or axes.
You can pass in axis
, keepdim
, and correction
keyword arguments to control the axis along
which the standard deviation is computed, whether the reduced dimensions are retained, and the Bessel's correction applied.
Tensor.manual_seed(42)
t = Tensor.normal(2, 3, mean=2.5, std=0.5)
print(t.numpy())
[[2.9889 2.7339 2.7763]
[2.3356 2.0722 2.6376]]
print(t.std().numpy())
0.33155
print(t.std(axis=0).numpy())
[0.462 0.4679 0.0981]
print(t.std(axis=1).numpy())
[0.1367 0.2829]
Source code in tinygrad/tensor.py
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 |
|
std_mean
¤
Calculates the standard deviation and mean over the dimensions specified by dim.
Syntactic sugar around Tensor.std
and Tensor.mean
to match torch.std_mean
.
Tensor.manual_seed(42)
t = Tensor.normal(2, 3, mean=2.5, std=0.5)
print(t.numpy())
[[2.9889 2.7339 2.7763]
[2.3356 2.0722 2.6376]]
std, mean = t.std_mean()
print(std.numpy(), mean.numpy())
0.33155 2.5907671
Source code in tinygrad/tensor.py
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 |
|
softmax
¤
softmax(axis=-1, dtype: Optional[DTypeLike] = None)
Applies the softmax function to the tensor along the specified axis.
Rescales the elements of the tensor such that they lie in the range [0, 1] and sum to 1.
You can pass in the axis
keyword argument to control the axis along which the softmax is computed.
Tensor.manual_seed(42)
t = Tensor.randn(2, 3)
print(t.numpy())
[[ 0.9779 0.4678 0.5526]
[-0.3288 -0.8555 0.2753]]
print(t.softmax().numpy())
[[0.4436 0.2664 0.29 ]
[0.2924 0.1727 0.5349]]
print(t.softmax(axis=0).numpy())
[[0.787 0.7897 0.5689]
[0.213 0.2103 0.4311]]
Source code in tinygrad/tensor.py
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 |
|
log_softmax
¤
log_softmax(axis=-1, dtype: Optional[DTypeLike] = None)
Applies the log-softmax function to the tensor along the specified axis.
The log-softmax function is a numerically stable alternative to the softmax function in log space.
You can pass in the axis
keyword argument to control the axis along which the log-softmax is computed.
Tensor.manual_seed(42)
t = Tensor.randn(2, 3)
print(t.numpy())
[[ 0.9779 0.4678 0.5526]
[-0.3288 -0.8555 0.2753]]
print(t.log_softmax().numpy())
[[-0.8127 -1.3228 -1.238 ]
[-1.2297 -1.7564 -0.6256]]
print(t.log_softmax(axis=0).numpy())
[[-0.2396 -0.2361 -0.564 ]
[-1.5463 -1.5594 -0.8414]]
Source code in tinygrad/tensor.py
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 |
|
logsumexp
¤
logsumexp(axis=None, keepdim=False)
Computes the log-sum-exp of the tensor along the specified axis or axes.
The log-sum-exp function is a numerically stable way to compute the logarithm of the sum of exponentials.
You can pass in axis
and keepdim
keyword arguments to control the axis along
which the log-sum-exp is computed and whether the reduced dimensions are retained.
Tensor.manual_seed(42)
t = Tensor.randn(2, 3)
print(t.numpy())
[[ 0.9779 0.4678 0.5526]
[-0.3288 -0.8555 0.2753]]
print(t.logsumexp().numpy())
2.1347282
print(t.logsumexp(axis=0).numpy())
[1.2174 0.7039 1.1167]
print(t.logsumexp(axis=1).numpy())
[1.7906 0.9009]
Source code in tinygrad/tensor.py
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 |
|
logcumsumexp
¤
logcumsumexp(axis=0)
Computes the log-cumsum-exp of the tensor along the specified axis or axes.
The log-cumsum-exp function is a numerically stable way to compute the logarithm of the cumulative sum of exponentials.
You can pass in the axis
keyword argument to control the axis along which
the log-cum-sum-exp is computed.
Tensor.manual_seed(42)
t = Tensor.randn(2, 3)
print(t.numpy())
[[ 0.9779 0.4678 0.5526]
[-0.3288 -0.8555 0.2753]]
print(t.logcumsumexp().numpy())
[[0.9779 0.4678 0.5526]
[1.2174 0.7039 1.1167]]
print(t.logcumsumexp(axis=0).numpy())
[[0.9779 0.4678 0.5526]
[1.2174 0.7039 1.1167]]
print(t.logcumsumexp(axis=1).numpy())
[[ 0.9779 1.4481 1.7906]
[-0.3288 0.1353 0.9009]]
Source code in tinygrad/tensor.py
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 |
|
argmax
¤
argmax(axis=None, keepdim=False)
Returns the indices of the maximum value of the tensor along the specified axis.
You can pass in axis
and keepdim
keyword arguments to control the axis along
which the maximum is computed and whether the reduced dimensions are retained.
t = Tensor([[1, 0, 2], [5, 4, 3]])
print(t.numpy())
[[1 0 2]
[5 4 3]]
print(t.argmax().numpy()) # Returns the index of the maximum value in the flattened tensor.
3
print(t.argmax(axis=0).numpy()) # Returns the indices of the maximum values along axis 0.
[1 1 1]
print(t.argmax(axis=1).numpy()) # Returns the indices of the maximum values along axis 1.
[2 0]
Source code in tinygrad/tensor.py
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 |
|
argmin
¤
argmin(axis=None, keepdim=False)
Returns the indices of the minimum value of the tensor along the specified axis.
You can pass in axis
and keepdim
keyword arguments to control the axis along
which the minimum is computed and whether the reduced dimensions are retained.
t = Tensor([[1, 0, 2], [5, 4, 3]])
print(t.numpy())
[[1 0 2]
[5 4 3]]
print(t.argmin().numpy()) # Returns the index of the minimum value in the flattened tensor.
1
print(t.argmin(axis=0).numpy()) # Returns the indices of the minimum values along axis 0.
[0 0 0]
print(t.argmin(axis=1).numpy()) # Returns the indices of the minimum values along axis 1.
[1 2]
Source code in tinygrad/tensor.py
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 |
|
Processing¤
avg_pool2d
¤
avg_pool2d(
kernel_size=(2, 2),
stride=None,
dilation=1,
padding=0,
ceil_mode=False,
count_include_pad=True,
)
Applies average pooling over a tensor.
This function supports three different types of padding
-
int
(single value): Applies the same padding value uniformly to all spatial dimensions. -
Tuple[int, ...]
(length = number of spatial dimensions): Specifies a distinct padding value for each spatial dimension in the form(padding_height, padding_width, ...)
. -
Tuple[int, ...]
(length = 2 * number of spatial dimensions): Specifies explicit padding for each side of each spatial dimension in the form(padding_left, padding_right, padding_top, padding_bottom, ...)
.
When ceil_mode
is set to True
, output shape will be determined using ceil division.
When count_include_pad
is set to False
, zero padding will not be included in the averaging calculation.
Note
unlike PyTorch, this implementation is not limited to only 2d pooling and instead works for any number of dimensions.
See: https://paperswithcode.com/method/average-pooling
t = Tensor.arange(25).reshape(1, 1, 5, 5)
print(t.avg_pool2d().numpy())
[[[[ 3. 5.]
[13. 15.]]]]
print(t.avg_pool2d(ceil_mode=True).numpy())
[[[[ 3. 5. 6.5]
[13. 15. 16.5]
[20.5 22.5 24. ]]]]
print(t.avg_pool2d(padding=1).numpy())
[[[[ 0. 0.75 1.75]
[ 3.75 9. 11. ]
[ 8.75 19. 21. ]]]]
print(t.avg_pool2d(padding=1, count_include_pad=False).numpy())
[[[[ 0. 1.5 3.5]
[ 7.5 9. 11. ]
[17.5 19. 21. ]]]]
Source code in tinygrad/tensor.py
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 |
|
max_pool2d
¤
max_pool2d(
kernel_size=(2, 2),
stride=None,
dilation=1,
padding=0,
ceil_mode=False,
)
Applies max pooling over a tensor.
This function supports three different types of padding
-
int
(single value): Applies the same padding value uniformly to all spatial dimensions. -
Tuple[int, ...]
(length = number of spatial dimensions): Specifies a distinct padding value for each spatial dimension in the form(padding_height, padding_width, ...)
. -
Tuple[int, ...]
(length = 2 * number of spatial dimensions): Specifies explicit padding for each side of each spatial dimension in the form(padding_left, padding_right, padding_top, padding_bottom, ...)
.
When ceil_mode
is set to True
, output shape will be determined using ceil division.
Note
unlike PyTorch, this implementation is not limited to only 2d pooling and instead works for any number of dimensions.
See: https://paperswithcode.com/method/max-pooling
t = Tensor.arange(25).reshape(1, 1, 5, 5)
print(t.max_pool2d().numpy())
[[[[ 6 8]
[16 18]]]]
print(t.max_pool2d(ceil_mode=True).numpy())
[[[[ 6 8 9]
[16 18 19]
[21 23 24]]]]
print(t.max_pool2d(padding=1).numpy())
[[[[ 0 2 4]
[10 12 14]
[20 22 24]]]]
Source code in tinygrad/tensor.py
2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 |
|
conv2d
¤
conv2d(
weight: Tensor,
bias: Optional[Tensor] = None,
groups=1,
stride=1,
dilation=1,
padding: int | tuple[int, ...] = 0,
acc_dtype: Optional[DTypeLike] = None,
) -> Tensor
Applies a convolution over a tensor with a given weight
and optional bias
.
This function supports three different types of padding
-
int
(single value): Applies the same padding value uniformly to all spatial dimensions. -
Tuple[int, ...]
(length = number of spatial dimensions): Specifies a distinct padding value for each spatial dimension in the form(padding_height, padding_width, ...)
. -
Tuple[int, ...]
(length = 2 * number of spatial dimensions): Specifies explicit padding for each side of each spatial dimension in the form(padding_left, padding_right, padding_top, padding_bottom, ...)
.
Note
unlike PyTorch, this implementation is not limited to only 2d convolutions and instead works for any number of dimensions.
See: https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
t = Tensor.arange(9).reshape(1, 1, 3, 3)
w = Tensor.ones(1, 1, 2, 2)
print(t.conv2d(w).numpy())
[[[[ 8. 12.]
[20. 24.]]]]
Source code in tinygrad/tensor.py
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 |
|
conv_transpose2d
¤
conv_transpose2d(
weight: Tensor,
bias: Optional[Tensor] = None,
groups=1,
stride=1,
dilation=1,
padding=0,
output_padding=0,
) -> Tensor
Applies a transposed convolution over a tensor with a given weight
and optional bias
.
This function supports three different types of padding
-
int
(single value): Applies the same padding value uniformly to all spatial dimensions. -
Tuple[int, ...]
(length = number of spatial dimensions): Specifies a distinct padding value for each spatial dimension in the form(padding_height, padding_width, ...)
. -
Tuple[int, ...]
(length = 2 * number of spatial dimensions): Specifies explicit padding for each side of each spatial dimension in the form(padding_left, padding_right, padding_top, padding_bottom, ...)
.
Note
unlike PyTorch, this implementation is not limited to only 2d transposed convolutions and instead works for any number of dimensions.
See: https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose2d.html
t = Tensor.arange(9).reshape(1, 1, 3, 3)
w = Tensor.ones(1, 1, 2, 2)
print(t.conv_transpose2d(w).numpy())
[[[[ 0. 1. 3. 2.]
[ 3. 8. 12. 7.]
[ 9. 20. 24. 13.]
[ 6. 13. 15. 8.]]]]
Source code in tinygrad/tensor.py
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 |
|
dot
¤
Performs dot product between two tensors.
If w
is 1-D, it's a sum product over the last axis of self
and w
.
If w
is N-D with N>=2, it's a sum product over the last axis of self
and the second-to-last axis of w
.
You can pass in the optional acc_dtype
keyword argument to control the data type of the accumulation.
a = Tensor([1, 2, 3])
b = Tensor([1, 1, 0])
print(a.dot(b).numpy())
3
a = Tensor([[1, 2], [3, 4]])
b = Tensor([[5, 6], [7, 8]])
print(a.dot(b).numpy())
[[19 22]
[43 50]]
Source code in tinygrad/tensor.py
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 |
|
matmul
¤
Performs matrix multiplication between two tensors.
You can pass in the reverse
keyword argument to control the order of the matrix multiplication.
You can pass in the optional acc_dtype
keyword argument to control the data type of the accumulation.
a = Tensor([[1, 2], [3, 4]])
b = Tensor([[5, 6], [7, 8]])
print(a.matmul(b).numpy())
[[19 22]
[43 50]]
Source code in tinygrad/tensor.py
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 |
|
einsum
staticmethod
¤
einsum(
formula: str,
*operands: Tensor | Sequence[Tensor],
acc_dtype: Optional[DTypeLike] = None
) -> Tensor
Sums the product of the elements of the input tensors according to a formula based on the Einstein summation convention.
See: https://pytorch.org/docs/stable/generated/torch.einsum.html
x = Tensor([[1, 2], [3, 4]])
y = Tensor([[5, 6], [7, 8]])
print(Tensor.einsum("ij,ij->", x, y).numpy())
70
Source code in tinygrad/tensor.py
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 |
|
cumsum
¤
Computes the cumulative sum of the tensor along the specified axis
.
t = Tensor.ones(2, 3)
print(t.numpy())
[[1. 1. 1.]
[1. 1. 1.]]
print(t.cumsum(1).numpy())
[[1. 2. 3.]
[1. 2. 3.]]
Source code in tinygrad/tensor.py
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 |
|
cummax
¤
Computes the cumulative max of the tensor along the specified axis
.
t = Tensor([0, 1, -1, 2, -2, 3, -3])
print(t.numpy())
[ 0 1 -1 2 -2 3 -3]
print(t.cummax(0).numpy())
[0 1 1 2 2 3 3]
Source code in tinygrad/tensor.py
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 |
|
triu
¤
Returns the upper triangular part of the tensor, the other elements are set to 0.
The argument diagonal
determines which diagonal is on the boundary. diagonal = 0
means the main diagonal.
Positive diagonal
means above the main diagonal, and negative diagonal
means below the main diagonal.
t = Tensor([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
print(t.numpy())
[[ 1 2 3 4]
[ 5 6 7 8]
[ 9 10 11 12]]
print(t.triu(diagonal=0).numpy())
[[ 1 2 3 4]
[ 0 6 7 8]
[ 0 0 11 12]]
print(t.triu(diagonal=1).numpy())
[[ 0 2 3 4]
[ 0 0 7 8]
[ 0 0 0 12]]
print(t.triu(diagonal=-1).numpy())
[[ 1 2 3 4]
[ 5 6 7 8]
[ 0 10 11 12]]
Source code in tinygrad/tensor.py
2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 |
|
tril
¤
Returns the lower triangular part of the tensor, the other elements are set to 0.
The argument diagonal
determines which diagonal is on the boundary. diagonal = 0
means the main diagonal.
Positive diagonal
means above the main diagonal, and negative diagonal
means below the main diagonal.
t = Tensor([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
print(t.numpy())
[[ 1 2 3 4]
[ 5 6 7 8]
[ 9 10 11 12]]
print(t.tril(diagonal=0).numpy())
[[ 1 0 0 0]
[ 5 6 0 0]
[ 9 10 11 0]]
print(t.tril(diagonal=1).numpy())
[[ 1 2 0 0]
[ 5 6 7 0]
[ 9 10 11 12]]
print(t.tril(diagonal=-1).numpy())
[[ 0 0 0 0]
[ 5 0 0 0]
[ 9 10 0 0]]
Source code in tinygrad/tensor.py
2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 |
|
interpolate
¤
Downsamples or Upsamples to the input size
, accepts 0 to N batch dimensions.
The interpolation algorithm is selected with mode
which currently only supports linear
, nearest
and nearest-exact
.
To run bilinear
or trilinear
, pass in a 2D or 3D size.
t = Tensor([[1, 2, 3, 4], [21, 22, 23, 24], [41, 42, 43, 44]])
print(t.numpy())
[[ 1 2 3 4]
[21 22 23 24]
[41 42 43 44]]
print(t.interpolate(size=(2,3), mode="linear").numpy())
[[ 6 7 8]
[36 37 38]]
Source code in tinygrad/tensor.py
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 |
|
scatter
¤
scatter(
dim: int,
index: Tensor,
src: Union[Tensor, ConstType],
reduce: Union[
None, Literal["multiply"], Literal["add"]
] = None,
) -> Tensor
Scatters src
values along an axis specified by dim
.
Apply add
or multiply
reduction operation with reduce
.
src = Tensor.arange(1, 11).reshape(2, 5)
print(src.numpy())
[[ 1 2 3 4 5]
[ 6 7 8 9 10]]
index = Tensor([[0, 1, 2, 0]])
print(Tensor.zeros(3, 5, dtype=src.dtype).scatter(0, index, src).numpy())
[[1 0 0 4 0]
[0 2 0 0 0]
[0 0 3 0 0]]
index = Tensor([[0, 1, 2], [0, 1, 4]])
print(Tensor.zeros(3, 5, dtype=src.dtype).scatter(1, index, src).numpy())
[[1 2 3 0 0]
[6 7 0 0 8]
[0 0 0 0 0]]
print(Tensor.full((2, 4), 2.0).scatter(1, Tensor([[2], [3]]), 1.23, reduce='multiply').numpy())
[[2. 2. 2.46 2. ]
[2. 2. 2. 2.46]]
print(Tensor.full((2, 4), 2.0).scatter(1, Tensor([[2], [3]]), 1.23, reduce='add').numpy())
[[2. 2. 3.23 2. ]
[2. 2. 2. 3.23]]
Source code in tinygrad/tensor.py
2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 |
|
Neural Network (functional)¤
linear
¤
Applies a linear transformation to self
using weight
and bias
.
See: https://pytorch.org/docs/stable/generated/torch.nn.Linear.html
t = Tensor([[1, 2], [3, 4]])
weight = Tensor([[1, 2], [3, 4]])
bias = Tensor([1, 2])
print(t.linear(weight, bias).numpy())
[[ 8 12]
[16 24]]
Source code in tinygrad/tensor.py
3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 |
|
sequential
¤
Applies a sequence of functions to self
chaining the output of each function to the input of the next.
t = Tensor([1, 2, 3])
print(t.sequential([lambda x: x * 2, lambda x: x + 1]).numpy())
[3 5 7]
Source code in tinygrad/tensor.py
3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 |
|
layernorm
¤
Applies Layer Normalization over a mini-batch of inputs.
- Described: https://paperswithcode.com/method/layer-normalization
- Paper: https://arxiv.org/abs/1607.06450v1
t = Tensor.randn(8, 10, 16) * 2 + 8
print(t.mean().item(), t.std().item())
7.923057556152344 2.0072731971740723
t = t.layernorm()
print(t.mean().item(), t.std().item())
-2.184478153921532e-09 1.0003893375396729
Source code in tinygrad/tensor.py
3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 |
|
batchnorm
¤
batchnorm(
weight: Optional[Tensor],
bias: Optional[Tensor],
mean: Tensor,
invstd: Tensor,
axis: Union[int, tuple[int, ...]] = 1,
) -> Tensor
Applies Batch Normalization over a mini-batch of inputs.
- Described: https://paperswithcode.com/method/batch-normalization
- Paper: https://arxiv.org/abs/1502.03167
t = Tensor.randn(8, 4, 16, 16) * 2 + 8
print(t.mean().item(), t.std().item())
8.030435562133789 1.9699469804763794
t = t.batchnorm(None, None, t.mean(axis=(0,2,3)), t.var(axis=(0,2,3)).add(1e-5).rsqrt())
print(t.mean().item(), t.std().item())
1.7121278688136954e-06 0.9998164176940918
Source code in tinygrad/tensor.py
3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 |
|
dropout
¤
dropout(p=0.5) -> Tensor
Applies dropout to self
.
Note
dropout is only applied when Tensor.training
is True
.
- Described: https://paperswithcode.com/method/dropout
- Paper: https://jmlr.org/papers/v15/srivastava14a.html
Tensor.manual_seed(42)
t = Tensor.randn(2, 2)
with Tensor.train():
print(t.dropout().numpy())
[[ 0. 2.17 ]
[ 0. -0.1682]]
Source code in tinygrad/tensor.py
3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 |
|
one_hot
¤
Converts self
to a one-hot tensor.
num_classes
defaults to -1, which means num_classes will be inferred as max(self) + 1.
t = Tensor([0, 1, 3, 3, 4])
print(t.one_hot(5).numpy())
[[1 0 0 0 0]
[0 1 0 0 0]
[0 0 0 1 0]
[0 0 0 1 0]
[0 0 0 0 1]]
Source code in tinygrad/tensor.py
3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 |
|
scaled_dot_product_attention
¤
scaled_dot_product_attention(
key: Tensor,
value: Tensor,
attn_mask: Tensor | None = None,
dropout_p: float = 0.0,
is_causal: bool = False,
) -> Tensor
Computes scaled dot-product attention.
self
is the query tensor, key
is the key tensor, and value
is the value tensor.
- Described: https://paperswithcode.com/method/scaled
- Paper: https://arxiv.org/abs/1706.03762v7
q = Tensor.randn(2, 4, 8)
k = Tensor.randn(2, 4, 8)
v = Tensor.randn(2, 4, 8)
print(q.scaled_dot_product_attention(k, v).numpy())
[[[-0.1425 -0.1433 -0.3625 0.8853 -0.3129 1.0271 -0.0019 0.2445]
[-0.7137 0.2617 1.1393 0.692 0.0461 0.1132 0.391 -0.3563]
[ 0.4718 0.6791 0.8956 0.9387 -0.7198 0.753 0.5702 0.2661]
[-1.0183 0.005 0.9208 0.6447 0.2658 0.0411 0.2314 -0.4636]]
[[ 0.2928 -0.3364 -0.1937 -0.0755 -0.6196 -0.7339 0.8431 -0.3794]
[ 0.5915 0.3565 -0.6987 0.241 0.2624 -0.1074 -0.3026 -0.3574]
[ 0.3176 -0.4436 -0.3136 -0.5334 -0.5756 -0.851 0.9595 -0.4201]
[ 0.4378 0.0234 -0.0984 0.4847 -0.3579 -0.3998 0.3781 -0.2338]]]
Source code in tinygrad/tensor.py
3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 |
|
binary_crossentropy
¤
Computes the binary cross-entropy loss between self
and Y
.
See: https://pytorch.org/docs/stable/generated/torch.nn.BCELoss.html
t = Tensor([0.1, 0.9, 0.2])
Y = Tensor([0, 1, 0])
print(t.binary_crossentropy(Y).item())
0.14462155103683472
Source code in tinygrad/tensor.py
3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 |
|
binary_crossentropy_logits
¤
Computes the binary cross-entropy loss between self
and Y
where self
is logits.
See: https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html
t = Tensor([-1, 2, -3])
Y = Tensor([0, 1, 0])
print(t.binary_crossentropy_logits(Y).item())
0.16292567551136017
Source code in tinygrad/tensor.py
3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 |
|
sparse_categorical_crossentropy
¤
sparse_categorical_crossentropy(
Y: Tensor,
ignore_index: int = -1,
label_smoothing=0.0,
reduction: ReductionStr = "mean",
) -> Tensor
Computes the sparse categorical cross-entropy loss between self
and Y
.
Note
self
is logits and Y
is the target labels.
NOTE: unlike PyTorch, this function expects the class axis to be -1
See: https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
t = Tensor([[-1, 2, -3], [1, -2, 3]])
Y = Tensor([1, 2])
print(t.sparse_categorical_crossentropy(Y).item())
0.09391524642705917
Source code in tinygrad/tensor.py
3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 |
|
cross_entropy
¤
cross_entropy(
Y: Tensor,
reduction: ReductionStr = "mean",
label_smoothing: float = 0.0,
) -> Tensor
Compute the cross entropy loss between input logits and target.
Note
self
are logits and Y
are the target labels or class probabilities.
See: https://pytorch.org/docs/stable/generated/torch.nn.functional.cross_entropy.html
t = Tensor([[-1, 2, -3], [1, -2, 3]])
Y = Tensor([1, 2])
print(t.cross_entropy(Y).item())
0.09391524642705917
t = Tensor([[-1, 2, -3], [1, -2, 3]])
Y = Tensor([1, 2])
print(t.cross_entropy(Y, reduction='none').numpy())
[0.055 0.1328]
Source code in tinygrad/tensor.py
3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 |
|
nll_loss
¤
nll_loss(
Y: Tensor,
weight: Optional[Tensor] = None,
ignore_index: Optional[int] = None,
reduction: ReductionStr = "mean",
) -> Tensor
Compute the negative log likelihood loss between log-probabilities and target labels.
Note
self
is log-probabilities and Y
is the Y labels or class probabilities.
See: https://pytorch.org/docs/stable/generated/torch.nn.functional.nll_loss.html
t = Tensor([[-1, 2, -3], [1, -2, 3]])
Y = Tensor([1, 2])
print(t.log_softmax().nll_loss(Y).item())
0.09391524642705917
t = Tensor([[-1, 2, -3], [1, -2, 3]])
Y = Tensor([1, 2])
print(t.log_softmax().nll_loss(Y, reduction='none').numpy())
[0.055 0.1328]
Source code in tinygrad/tensor.py
3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 |
|