Properties
Basic¤
ndim
property
¤
ndim: int
Returns the number of dimensions in the tensor.
t = Tensor([[1, 2], [3, 4]])
print(t.ndim)
2
numel
¤
numel() -> sint
Returns the total number of elements in the tensor.
t = Tensor([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
print(t.numel())
8
Source code in tinygrad/tensor.py
3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 |
|
element_size
¤
element_size() -> int
Returns the size in bytes of an individual element in the tensor.
t = Tensor([5], dtype=dtypes.int16)
print(t.element_size())
2
Source code in tinygrad/tensor.py
3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 |
|
nbytes
¤
nbytes() -> int
Returns the total number of bytes of all elements in the tensor.
t = Tensor([8, 9], dtype=dtypes.float)
print(t.nbytes())
8
Source code in tinygrad/tensor.py
3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 |
|
is_floating_point
¤
is_floating_point() -> bool
Returns True
if the tensor contains floating point types, i.e. is one of dtype.float64
, dtype.float32
,
dtype.float16
, dtype.bfloat16
.
t = Tensor([8, 9], dtype=dtypes.float32)
print(t.is_floating_point())
True
Source code in tinygrad/tensor.py
3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 |
|
size
¤
Return the size of the tensor. If dim
is specified, return the length along dimension dim
. Otherwise return the shape of the tensor.
t = Tensor([[4, 5, 6], [7, 8, 9]])
print(t.size())
(2, 3)
print(t.size(dim=1))
3
Source code in tinygrad/tensor.py
3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 |
|
Data Access¤
data
¤
data() -> memoryview
Returns the data of this tensor as a memoryview.
t = Tensor([1, 2, 3, 4])
print(np.frombuffer(t.data(), dtype=np.int32))
[1 2 3 4]
Source code in tinygrad/tensor.py
306 307 308 309 310 311 312 313 314 315 316 317 318 |
|
item
¤
item() -> ConstType
Returns the value of this tensor as a standard Python number.
t = Tensor(42)
print(t.item())
42
Source code in tinygrad/tensor.py
320 321 322 323 324 325 326 327 328 329 330 |
|
tolist
¤
Returns the value of this tensor as a nested list. Returns single value for const tensor.
t = Tensor([1, 2, 3, 4])
print(t.tolist())
[1, 2, 3, 4]
t = Tensor(5)
print(t.tolist())
5
Source code in tinygrad/tensor.py
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
|
numpy
¤
numpy() -> 'np.ndarray'
Returns the value of this tensor as a numpy.ndarray
.
t = Tensor([1, 2, 3, 4])
print(repr(t.numpy()))
array([1, 2, 3, 4], dtype=int32)
Source code in tinygrad/tensor.py
350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
|
tinygrad ops¤
schedule_with_vars
¤
Creates the schedule needed to realize these Tensor(s), with Variables.
Note
A Tensor can only be scheduled once.
Source code in tinygrad/tensor.py
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
|
schedule
¤
schedule(*lst: Tensor) -> list[ScheduleItem]
Creates the schedule needed to realize these Tensor(s).
Source code in tinygrad/tensor.py
254 255 256 257 258 |
|
realize
¤
Triggers the computation needed to create these Tensor(s).
Source code in tinygrad/tensor.py
260 261 262 263 |
|
replace
¤
Replaces the data of this tensor with the data of another tensor. Only the shape of the tensors must match.
Source code in tinygrad/tensor.py
265 266 267 268 269 270 271 272 |
|
assign
¤
assign(x) -> Tensor
Source code in tinygrad/tensor.py
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
|
detach
¤
detach() -> Tensor
Returns a new tensor with the same data as this tensor, but detached from the autograd graph.
Source code in tinygrad/tensor.py
291 292 293 294 295 |
|
to
¤
Moves the tensor to the given device.
Source code in tinygrad/tensor.py
373 374 375 376 377 378 379 380 381 382 |
|
to_
¤
Moves the tensor to the given device in place.
Source code in tinygrad/tensor.py
384 385 386 387 388 389 390 |
|
shard
¤
Shards the tensor across the given devices. Optionally specify which axis to shard on.
t = Tensor.empty(2, 4)
print(t.shard((t.device, t.device), axis=1).lazydata)
UOp(Ops.MULTI, dtypes.float, arg=(1, (True, True)), src=(
UOp(Ops.CONTIGUOUS, dtypes.float, arg=None, src=(
UOp(Ops.COPY, dtypes.float, arg=False, src=(
x2:=UOp(Ops.DEVICE, dtypes.void, arg='CPU', src=()),
UOp(Ops.CONTIGUOUS, dtypes.float, arg=None, src=(
UOp(Ops.SHRINK, dtypes.float, arg=((0, 2), (0, 2)), src=(
x5:=UOp(Ops.RESHAPE, dtypes.float, arg=(2, 4), src=(
UOp(Ops.BUFFER, dtypes.float, arg=8, src=(
x2,
UOp(Ops.UNIQUE, dtypes.void, arg=1073, src=()),)),)),)),)),)),)),
UOp(Ops.CONTIGUOUS, dtypes.float, arg=None, src=(
UOp(Ops.COPY, dtypes.float, arg=False, src=(
x2,
UOp(Ops.CONTIGUOUS, dtypes.float, arg=None, src=(
UOp(Ops.SHRINK, dtypes.float, arg=((0, 2), (2, 4)), src=(
x5,)),)),)),)),))
Source code in tinygrad/tensor.py
392 393 394 395 396 397 398 399 400 401 402 403 404 |
|
shard_
¤
Shards the tensor across the given devices in place.
Source code in tinygrad/tensor.py
406 407 408 409 410 |
|
contiguous
¤
contiguous()
Returns a contiguous tensor.
Source code in tinygrad/tensor.py
2574 2575 2576 2577 2578 |
|
contiguous_backward
¤
contiguous_backward()
Inserts a contiguous operation in the backward pass.
Source code in tinygrad/tensor.py
2579 2580 2581 2582 2583 |
|
Gradient¤
gradient
¤
gradient(
*targets: Tensor,
gradient: Optional[Tensor] = None,
materialize_grads=False
) -> list[Tensor]
Compute the gradient of the targets with respect to self.
x = Tensor.eye(3)
y = Tensor([[2.0,0,-2.0]])
z = y.matmul(x).sum()
dx, dy = z.gradient(x, y)
print(dx.tolist()) # dz/dx
print(dy.tolist()) # dz/dy
[[2.0, 2.0, 2.0], [0.0, 0.0, 0.0], [-2.0, -2.0, -2.0]]
[[1.0, 1.0, 1.0]]
Source code in tinygrad/tensor.py
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 |
|
backward
¤
Propagates the gradient of a tensor backwards through the computation graph. If the 'gradient' argument is not provided, the tensor must be a scalar, and the gradient is implicitly set to 1.0.
t = Tensor([1.0, 2.0, 3.0, 4.0], requires_grad=True)
t.sum().backward()
print(t.grad.numpy())
[1. 1. 1. 1.]
Source code in tinygrad/tensor.py
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 |
|