Properties
Basic¤
ndim
property
¤
ndim: int
Returns the number of dimensions in the tensor.
t = Tensor([[1, 2], [3, 4]])
print(t.ndim)
2
numel
¤
numel() -> sint
Returns the total number of elements in the tensor.
t = Tensor([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
print(t.numel())
8
Source code in tinygrad/tensor.py
3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 |
|
element_size
¤
element_size() -> int
Returns the size in bytes of an individual element in the tensor.
t = Tensor([5], dtype=dtypes.int16)
print(t.element_size())
2
Source code in tinygrad/tensor.py
3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 |
|
nbytes
¤
nbytes() -> int
Returns the total number of bytes of all elements in the tensor.
t = Tensor([8, 9], dtype=dtypes.float)
print(t.nbytes())
8
Source code in tinygrad/tensor.py
3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 |
|
is_floating_point
¤
is_floating_point() -> bool
Returns True
if the tensor contains floating point types, i.e. is one of dtype.float64
, dtype.float32
,
dtype.float16
, dtype.bfloat16
.
t = Tensor([8, 9], dtype=dtypes.float32)
print(t.is_floating_point())
True
Source code in tinygrad/tensor.py
3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 |
|
size
¤
Return the size of the tensor. If dim
is specified, return the length along dimension dim
. Otherwise return the shape of the tensor.
t = Tensor([[4, 5, 6], [7, 8, 9]])
print(t.size())
(2, 3)
print(t.size(dim=1))
3
Source code in tinygrad/tensor.py
3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 |
|
Data Access¤
data
¤
data() -> memoryview
Returns the data of this tensor as a memoryview.
t = Tensor([1, 2, 3, 4])
print(np.frombuffer(t.data(), dtype=np.int32))
[1 2 3 4]
Source code in tinygrad/tensor.py
316 317 318 319 320 321 322 323 324 325 326 327 328 |
|
item
¤
item() -> ConstType
Returns the value of this tensor as a standard Python number.
t = Tensor(42)
print(t.item())
42
Source code in tinygrad/tensor.py
330 331 332 333 334 335 336 337 338 339 340 |
|
tolist
¤
Returns the value of this tensor as a nested list.
t = Tensor([1, 2, 3, 4])
print(t.tolist())
[1, 2, 3, 4]
Source code in tinygrad/tensor.py
344 345 346 347 348 349 350 351 352 353 |
|
numpy
¤
numpy() -> 'np.ndarray'
Returns the value of this tensor as a numpy.ndarray
.
t = Tensor([1, 2, 3, 4])
print(repr(t.numpy()))
array([1, 2, 3, 4], dtype=int32)
Source code in tinygrad/tensor.py
355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
|
tinygrad ops¤
schedule_with_vars
¤
Creates the schedule needed to realize these Tensor(s), with Variables.
Note
A Tensor can only be scheduled once.
Source code in tinygrad/tensor.py
251 252 253 254 255 256 257 258 259 260 |
|
schedule
¤
schedule(*lst: Tensor) -> list[ScheduleItem]
Creates the schedule needed to realize these Tensor(s).
Source code in tinygrad/tensor.py
262 263 264 265 266 |
|
realize
¤
Triggers the computation needed to create these Tensor(s).
Source code in tinygrad/tensor.py
268 269 270 271 |
|
replace
¤
Replaces the data of this tensor with the data of another tensor. Only the shape of the tensors must match.
Source code in tinygrad/tensor.py
273 274 275 276 277 278 279 280 281 |
|
assign
¤
assign(x) -> Tensor
Source code in tinygrad/tensor.py
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
|
detach
¤
detach() -> Tensor
Returns a new tensor with the same data as this tensor, but detached from the autograd graph.
Source code in tinygrad/tensor.py
302 303 304 305 306 |
|
to
¤
Moves the tensor to the given device.
Source code in tinygrad/tensor.py
379 380 381 382 383 384 385 386 387 388 389 |
|
to_
¤
Moves the tensor to the given device in place.
Source code in tinygrad/tensor.py
391 392 393 394 395 396 397 |
|
shard
¤
Shards the tensor across the given devices. Optionally specify which axis to shard on.
t = Tensor.empty(2, 4)
print(t.shard((t.device, t.device), axis=1).lazydata)
<MLB self.axis=1 self.real=[True, True]
CLANG ShapeTracker(views=(View(shape=(2, 2), strides=(2, 1), offset=0, mask=None, contiguous=True),))
CLANG ShapeTracker(views=(View(shape=(2, 2), strides=(2, 1), offset=0, mask=None, contiguous=True),))>
Source code in tinygrad/tensor.py
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 |
|
shard_
¤
Shards the tensor across the given devices in place.
Source code in tinygrad/tensor.py
422 423 424 425 426 |
|
contiguous
¤
contiguous()
Returns a contiguous tensor.
Source code in tinygrad/tensor.py
2541 2542 2543 2544 2545 |
|
contiguous_backward
¤
contiguous_backward()
Inserts a contiguous operation in the backward pass.
Source code in tinygrad/tensor.py
2546 2547 2548 2549 2550 |
|
Gradient¤
gradient
¤
Compute the gradient of the targets with respect to self.
x = Tensor.eye(3)
y = Tensor([[2.0,0,-2.0]])
z = y.matmul(x).sum()
dx, dy = z.gradient(x, y)
print(dx.tolist()) # dz/dx
print(dy.tolist()) # dz/dy
[[2.0, 2.0, 2.0], [0.0, 0.0, 0.0], [-2.0, -2.0, -2.0]]
[[1.0, 1.0, 1.0]]
Source code in tinygrad/tensor.py
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 |
|
backward
¤
Propagates the gradient of a tensor backwards through the computation graph. If the 'gradient' argument is not provided, the tensor must be a scalar, and the gradient is implicitly set to 1.0. If 'retain_graph' is false, the graph used to compute the grads will be freed. Otherwise, it will be kept. Keeping it can increase memory usage.
t = Tensor([1.0, 2.0, 3.0, 4.0], requires_grad=True)
t.sum().backward()
print(t.grad.numpy())
[1. 1. 1. 1.]
Source code in tinygrad/tensor.py
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 |
|