Skip to content

Complex Ops

Reduce¤

sum ¤

sum(
    axis: Optional[Union[int, Sequence[int]]] = None,
    keepdim=False,
    acc_dtype: Optional[DTypeLike] = None,
)

Returns the sum of the elements of the tensor along the specified axis or axes.

You can pass in axis and keepdim keyword arguments to control the axis along which the maximum is computed and whether the reduced dimensions are retained.

You can pass in acc_dtype keyword argument to control the data type of the accumulation. If not specified, the accumulation data type is chosen based on the input tensor's data type.

t = Tensor.arange(6).reshape(2, 3)
print(t.numpy())
[[0 1 2]
 [3 4 5]]
print(t.sum().numpy())
15
print(t.sum(axis=0).numpy())
[3 5 7]
print(t.sum(axis=1).numpy())
[ 3 12]

Source code in tinygrad/tensor.py
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
def sum(self, axis:Optional[Union[int, Sequence[int]]]=None, keepdim=False, acc_dtype:Optional[DTypeLike]=None):
  """
  Returns the sum of the elements of the tensor along the specified axis or axes.

  You can pass in `axis` and `keepdim` keyword arguments to control the axis along
  which the maximum is computed and whether the reduced dimensions are retained.

  You can pass in `acc_dtype` keyword argument to control the data type of the accumulation.
  If not specified, the accumulation data type is chosen based on the input tensor's data type.

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor.arange(6).reshape(2, 3)
  print(t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.sum().numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.sum(axis=0).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.sum(axis=1).numpy())
  ```
  """
  ret = self.cast(acc_dtype or sum_acc_dtype(self.dtype))._reduce(F.Sum, axis, keepdim)
  return ret.cast(self.dtype) if acc_dtype is None and self.dtype in (dtypes.float16, dtypes.bfloat16) else ret

prod ¤

prod(
    axis: Optional[Union[int, Sequence[int]]] = None,
    keepdim=False,
    acc_dtype: Optional[DTypeLike] = None,
)

Returns the product of the elements of the tensor along the specified axis or axes.

You can pass in axis and keepdim keyword arguments to control the axis along which the maximum is computed and whether the reduced dimensions are retained.

You can pass in acc_dtype keyword argument to control the data type of the accumulation. If not specified, the accumulation data type is chosen based on the input tensor's data type.

t = Tensor([-1, -2, -3, 1, 2, 3]).reshape(2, 3)
print(t.numpy())
[[-1 -2 -3]
 [ 1  2  3]]
print(t.prod().numpy())
-36
print(t.prod(axis=0).numpy())
[-1 -4 -9]
print(t.prod(axis=1).numpy())
[-6  6]

Source code in tinygrad/tensor.py
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
def prod(self, axis:Optional[Union[int, Sequence[int]]]=None, keepdim=False, acc_dtype:Optional[DTypeLike]=None):
  """
  Returns the product of the elements of the tensor along the specified axis or axes.

  You can pass in `axis` and `keepdim` keyword arguments to control the axis along
  which the maximum is computed and whether the reduced dimensions are retained.

  You can pass in `acc_dtype` keyword argument to control the data type of the accumulation.
  If not specified, the accumulation data type is chosen based on the input tensor's data type.

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor([-1, -2, -3, 1, 2, 3]).reshape(2, 3)
  print(t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.prod().numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.prod(axis=0).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.prod(axis=1).numpy())
  ```
  """
  return self.cast(acc_dtype or self.dtype)._reduce(F.Prod, axis, keepdim)

max ¤

max(
    axis: Optional[Union[int, Sequence[int]]] = None,
    keepdim=False,
)

Returns the maximum value of the tensor along the specified axis or axes.

You can pass in axis and keepdim keyword arguments to control the axis along which the maximum is computed and whether the reduced dimensions are retained.

t = Tensor([[1, 0, 2], [5, 4, 3]])
print(t.numpy())
[[1 0 2]
 [5 4 3]]
print(t.max().numpy())
5
print(t.max(axis=0).numpy())
[5 4 3]
print(t.max(axis=1, keepdim=True).numpy())
[[2]
 [5]]

Source code in tinygrad/tensor.py
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
def max(self, axis:Optional[Union[int, Sequence[int]]]=None, keepdim=False):
  """
  Returns the maximum value of the tensor along the specified axis or axes.

  You can pass in `axis` and `keepdim` keyword arguments to control the axis along
  which the maximum is computed and whether the reduced dimensions are retained.

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor([[1, 0, 2], [5, 4, 3]])
  print(t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.max().numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.max(axis=0).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.max(axis=1, keepdim=True).numpy())
  ```
  """
  return self._reduce(F.Max, axis, keepdim)

min ¤

min(
    axis: Optional[Union[int, Sequence[int]]] = None,
    keepdim=False,
)

Returns the minimum value of the tensor along the specified axis or axes.

You can pass in axis and keepdim keyword arguments to control the axis along which the minimum is computed and whether the reduced dimensions are retained.

t = Tensor([[1, 0, 2], [5, 4, 3]])
print(t.numpy())
[[1 0 2]
 [5 4 3]]
print(t.min().numpy())
0
print(t.min(axis=0).numpy())
[1 0 2]
print(t.min(axis=1, keepdim=True).numpy())
[[0]
 [3]]

Source code in tinygrad/tensor.py
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
def min(self, axis:Optional[Union[int, Sequence[int]]]=None, keepdim=False):
  """
  Returns the minimum value of the tensor along the specified axis or axes.

  You can pass in `axis` and `keepdim` keyword arguments to control the axis along
  which the minimum is computed and whether the reduced dimensions are retained.

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor([[1, 0, 2], [5, 4, 3]])
  print(t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.min().numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.min(axis=0).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.min(axis=1, keepdim=True).numpy())
  ```
  """
  return -((-self).max(axis=axis, keepdim=keepdim))

any ¤

any(
    axis: Optional[Union[int, Sequence[int]]] = None,
    keepdim=False,
)

Tests if any element evaluates to True along the specified axis or axes.

You can pass in axis and keepdim keyword arguments to control the reduce axis and whether the reduced dimensions are retained.

t = Tensor([[True, True], [True, False], [False, False]])
print(t.numpy())
[[ True  True]
 [ True False]
 [False False]]
print(t.any().numpy())
True
print(t.any(axis=0).numpy())
[ True  True]
print(t.any(axis=1, keepdim=True).numpy())
[[ True]
 [ True]
 [False]]

Source code in tinygrad/tensor.py
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
def any(self, axis:Optional[Union[int, Sequence[int]]]=None, keepdim=False):
  """
  Tests if any element evaluates to `True` along the specified axis or axes.

  You can pass in `axis` and `keepdim` keyword arguments to control the reduce axis and whether the reduced dimensions are retained.

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor([[True, True], [True, False], [False, False]])
  print(t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.any().numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.any(axis=0).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.any(axis=1, keepdim=True).numpy())
  ```
  """
  return self.bool().max(axis, keepdim)

all ¤

all(
    axis: Optional[Union[int, Sequence[int]]] = None,
    keepdim=False,
)

Tests if all element evaluates to True along the specified axis or axes.

You can pass in axis and keepdim keyword arguments to control the reduce axis and whether the reduced dimensions are retained.

t = Tensor([[True, True], [True, False], [False, False]])
print(t.numpy())
[[ True  True]
 [ True False]
 [False False]]
print(t.all().numpy())
False
print(t.all(axis=0).numpy())
[False False]
print(t.all(axis=1, keepdim=True).numpy())
[[ True]
 [False]
 [False]]

Source code in tinygrad/tensor.py
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
def all(self, axis:Optional[Union[int, Sequence[int]]]=None, keepdim=False):
  """
  Tests if all element evaluates to `True` along the specified axis or axes.

  You can pass in `axis` and `keepdim` keyword arguments to control the reduce axis and whether the reduced dimensions are retained.

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor([[True, True], [True, False], [False, False]])
  print(t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.all().numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.all(axis=0).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.all(axis=1, keepdim=True).numpy())
  ```
  """
  return self.logical_not().any(axis, keepdim).logical_not()

mean ¤

mean(
    axis: Optional[Union[int, Sequence[int]]] = None,
    keepdim=False,
)

Returns the mean value of the tensor along the specified axis or axes.

You can pass in axis and keepdim keyword arguments to control the axis along which the mean is computed and whether the reduced dimensions are retained.

Tensor.manual_seed(42)
t = Tensor.normal(2, 3, mean=2.5, std=0.5)
print(t.numpy())
[[2.0979 1.9493 2.0452]
 [3.1401 1.3559 2.8539]]
print(t.mean().numpy())
2.2403831
print(t.mean(axis=0).numpy())
[2.619  1.6526 2.4496]
print(t.mean(axis=1).numpy())
[2.0308 2.4499]

Source code in tinygrad/tensor.py
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
def mean(self, axis:Optional[Union[int, Sequence[int]]]=None, keepdim=False):
  """
  Returns the mean value of the tensor along the specified axis or axes.

  You can pass in `axis` and `keepdim` keyword arguments to control the axis along
  which the mean is computed and whether the reduced dimensions are retained.

  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  t = Tensor.normal(2, 3, mean=2.5, std=0.5)
  print(t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.mean().numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.mean(axis=0).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.mean(axis=1).numpy())
  ```
  """
  output_dtype = self.dtype if dtypes.is_float(self.dtype) else dtypes.float32
  numerator = self.cast(sum_acc_dtype(self.dtype)).sum(axis=axis, keepdim=keepdim)
  return numerator.div(prod([si for si, so in zip(self.shape, self.sum(axis=axis, keepdim=True).shape) if si != so])).cast(output_dtype)

var ¤

var(
    axis: Optional[Union[int, Sequence[int]]] = None,
    keepdim=False,
    correction=1,
)

Returns the variance of the tensor along the specified axis or axes.

You can pass in axis, keepdim, and correction keyword arguments to control the axis along which the variance is computed, whether the reduced dimensions are retained, and the Bessel's correction applied.

Tensor.manual_seed(42)
t = Tensor.normal(2, 3, mean=2.5, std=0.5)
print(t.numpy())
[[2.0979 1.9493 2.0452]
 [3.1401 1.3559 2.8539]]
print(t.var().numpy())
0.4222705
print(t.var(axis=0).numpy())
[0.5431 0.1761 0.327 ]
print(t.var(axis=1).numpy())
[0.0057 0.9183]

Source code in tinygrad/tensor.py
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
def var(self, axis:Optional[Union[int, Sequence[int]]]=None, keepdim=False, correction=1):
  """
  Returns the variance of the tensor along the specified axis or axes.

  You can pass in `axis`, `keepdim`, and `correction` keyword arguments to control the axis along
  which the variance is computed, whether the reduced dimensions are retained, and the Bessel's correction applied.

  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  t = Tensor.normal(2, 3, mean=2.5, std=0.5)
  print(t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.var().numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.var(axis=0).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.var(axis=1).numpy())
  ```
  """
  squares = (self - self.mean(axis=axis, keepdim=True)).square()
  n = prod([si for si, so in zip(self.shape, squares.sum(axis=axis, keepdim=True).shape) if si != so])
  return squares.sum(axis=axis, keepdim=keepdim).div(max(0, n-correction))

std ¤

std(
    axis: Optional[Union[int, Sequence[int]]] = None,
    keepdim=False,
    correction=1,
)

Returns the standard deviation of the tensor along the specified axis or axes.

You can pass in axis, keepdim, and correction keyword arguments to control the axis along which the standard deviation is computed, whether the reduced dimensions are retained, and the Bessel's correction applied.

Tensor.manual_seed(42)
t = Tensor.normal(2, 3, mean=2.5, std=0.5)
print(t.numpy())
[[2.0979 1.9493 2.0452]
 [3.1401 1.3559 2.8539]]
print(t.std().numpy())
0.6498234
print(t.std(axis=0).numpy())
[0.7369 0.4197 0.5718]
print(t.std(axis=1).numpy())
[0.0753 0.9583]

Source code in tinygrad/tensor.py
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
def std(self, axis:Optional[Union[int, Sequence[int]]]=None, keepdim=False, correction=1):
  """
  Returns the standard deviation of the tensor along the specified axis or axes.

  You can pass in `axis`, `keepdim`, and `correction` keyword arguments to control the axis along
  which the standard deviation is computed, whether the reduced dimensions are retained, and the Bessel's correction applied.

  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  t = Tensor.normal(2, 3, mean=2.5, std=0.5)
  print(t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.std().numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.std(axis=0).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.std(axis=1).numpy())
  ```
  """
  return self.var(axis, keepdim, correction).sqrt()

std_mean ¤

std_mean(
    axis: Optional[Union[int, Sequence[int]]] = None,
    keepdim=False,
    correction=1,
)

Calculates the standard deviation and mean over the dimensions specified by dim. Syntactic sugar around Tensor.std and Tensor.mean to match torch.std_mean.

Tensor.manual_seed(42)
t = Tensor.normal(2, 3, mean=2.5, std=0.5)
print(t.numpy())
[[2.0979 1.9493 2.0452]
 [3.1401 1.3559 2.8539]]
std, mean = t.std_mean()
print(std.numpy(), mean.numpy())
0.6498234 2.2403831

Source code in tinygrad/tensor.py
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
def std_mean(self, axis:Optional[Union[int, Sequence[int]]]=None, keepdim=False, correction=1):
  """
  Calculates the standard deviation and mean over the dimensions specified by dim.
  Syntactic sugar around `Tensor.std` and `Tensor.mean` to match `torch.std_mean`.

  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  t = Tensor.normal(2, 3, mean=2.5, std=0.5)
  print(t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  std, mean = t.std_mean()
  print(std.numpy(), mean.numpy())
  ```
  """
  return self.std(axis, keepdim, correction), self.mean(axis, keepdim)

softmax ¤

softmax(axis=-1)

Applies the softmax function to the tensor along the specified axis.

Rescales the elements of the tensor such that they lie in the range [0, 1] and sum to 1.

You can pass in the axis keyword argument to control the axis along which the softmax is computed.

Tensor.manual_seed(42)
t = Tensor.randn(2, 3)
print(t.numpy())
[[-0.8042 -1.1013 -0.9095]
 [ 1.2802 -2.2883  0.7078]]
print(t.softmax().numpy())
[[0.3784 0.2811 0.3405]
 [0.628  0.0177 0.3543]]
print(t.softmax(axis=0).numpy())
[[0.1106 0.7662 0.1656]
 [0.8894 0.2338 0.8344]]

Source code in tinygrad/tensor.py
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
def softmax(self, axis=-1):
  """
  Applies the softmax function to the tensor along the specified axis.

  Rescales the elements of the tensor such that they lie in the range [0, 1] and sum to 1.

  You can pass in the `axis` keyword argument to control the axis along which the softmax is computed.

  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  t = Tensor.randn(2, 3)
  print(t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.softmax().numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.softmax(axis=0).numpy())
  ```
  """
  _, e, ss = self._softmax(axis)
  return e.div(ss)

log_softmax ¤

log_softmax(axis=-1)

Applies the log-softmax function to the tensor along the specified axis.

The log-softmax function is a numerically stable alternative to the softmax function in log space.

You can pass in the axis keyword argument to control the axis along which the log-softmax is computed.

Tensor.manual_seed(42)
t = Tensor.randn(2, 3)
print(t.numpy())
[[-0.8042 -1.1013 -0.9095]
 [ 1.2802 -2.2883  0.7078]]
print(t.log_softmax().numpy())
[[-0.9719 -1.269  -1.0772]
 [-0.4652 -4.0337 -1.0376]]
print(t.log_softmax(axis=0).numpy())
[[-2.2016 -0.2663 -1.7984]
 [-0.1172 -1.4533 -0.181 ]]

Source code in tinygrad/tensor.py
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
def log_softmax(self, axis=-1):
  """
  Applies the log-softmax function to the tensor along the specified axis.

  The log-softmax function is a numerically stable alternative to the softmax function in log space.

  You can pass in the `axis` keyword argument to control the axis along which the log-softmax is computed.

  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  t = Tensor.randn(2, 3)
  print(t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.log_softmax().numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.log_softmax(axis=0).numpy())
  ```
  """
  m, _, ss = self._softmax(axis)
  return m - ss.log()

logsumexp ¤

logsumexp(axis=None, keepdim=False)

Computes the log-sum-exp of the tensor along the specified axis or axes.

The log-sum-exp function is a numerically stable way to compute the logarithm of the sum of exponentials.

You can pass in axis and keepdim keyword arguments to control the axis along which the log-sum-exp is computed and whether the reduced dimensions are retained.

Tensor.manual_seed(42)
t = Tensor.randn(2, 3)
print(t.numpy())
[[-0.8042 -1.1013 -0.9095]
 [ 1.2802 -2.2883  0.7078]]
print(t.logsumexp().numpy())
1.9330813
print(t.logsumexp(axis=0).numpy())
[ 1.3974 -0.835   0.8888]
print(t.logsumexp(axis=1).numpy())
[0.1677 1.7454]

Source code in tinygrad/tensor.py
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
def logsumexp(self, axis=None, keepdim=False):
  """
  Computes the log-sum-exp of the tensor along the specified axis or axes.

  The log-sum-exp function is a numerically stable way to compute the logarithm of the sum of exponentials.

  You can pass in `axis` and `keepdim` keyword arguments to control the axis along
  which the log-sum-exp is computed and whether the reduced dimensions are retained.

  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  t = Tensor.randn(2, 3)
  print(t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.logsumexp().numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.logsumexp(axis=0).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.logsumexp(axis=1).numpy())
  ```
  """
  m = self.max(axis=axis, keepdim=True)
  return (self - m).exp().sum(axis=axis, keepdim=keepdim).log() + m.squeeze(axis)

argmax ¤

argmax(axis=None, keepdim=False)

Returns the indices of the maximum value of the tensor along the specified axis.

You can pass in axis and keepdim keyword arguments to control the axis along which the maximum is computed and whether the reduced dimensions are retained.

t = Tensor([[1, 0, 2], [5, 4, 3]])
print(t.numpy())
[[1 0 2]
 [5 4 3]]
print(t.argmax().numpy()) # Returns the index of the maximum value in the flattened tensor.
3
print(t.argmax(axis=0).numpy()) # Returns the indices of the maximum values along axis 0.
[1 1 1]
print(t.argmax(axis=1).numpy()) # Returns the indices of the maximum values along axis 1.
[2 0]

Source code in tinygrad/tensor.py
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
def argmax(self, axis=None, keepdim=False):
  """
  Returns the indices of the maximum value of the tensor along the specified axis.

  You can pass in `axis` and `keepdim` keyword arguments to control the axis along
  which the maximum is computed and whether the reduced dimensions are retained.

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor([[1, 0, 2], [5, 4, 3]])
  print(t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.argmax().numpy()) # Returns the index of the maximum value in the flattened tensor.
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.argmax(axis=0).numpy()) # Returns the indices of the maximum values along axis 0.
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.argmax(axis=1).numpy()) # Returns the indices of the maximum values along axis 1.
  ```
  """
  if axis is None: return self.flatten().argmax(0)
  axis = self._resolve_dim(axis)
  m = self == self.max(axis=axis, keepdim=True)
  idx = m * Tensor.arange(self.shape[axis]-1,-1,-1, requires_grad=False, device=self.device).reshape(self.shape[axis], *[1]*(self.ndim-axis-1))
  return (self.shape[axis]-idx.max(axis=axis, keepdim=keepdim)-1).cast(dtypes.int32)

argmin ¤

argmin(axis=None, keepdim=False)

Returns the indices of the minimum value of the tensor along the specified axis.

You can pass in axis and keepdim keyword arguments to control the axis along which the minimum is computed and whether the reduced dimensions are retained.

t = Tensor([[1, 0, 2], [5, 4, 3]])
print(t.numpy())
[[1 0 2]
 [5 4 3]]
print(t.argmin().numpy()) # Returns the index of the minimum value in the flattened tensor.
1
print(t.argmin(axis=0).numpy()) # Returns the indices of the minimum values along axis 0.
[0 0 0]
print(t.argmin(axis=1).numpy()) # Returns the indices of the minimum values along axis 1.
[1 2]

Source code in tinygrad/tensor.py
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
def argmin(self, axis=None, keepdim=False):
  """
  Returns the indices of the minimum value of the tensor along the specified axis.

  You can pass in `axis` and `keepdim` keyword arguments to control the axis along
  which the minimum is computed and whether the reduced dimensions are retained.

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor([[1, 0, 2], [5, 4, 3]])
  print(t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.argmin().numpy()) # Returns the index of the minimum value in the flattened tensor.
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.argmin(axis=0).numpy()) # Returns the indices of the minimum values along axis 0.
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.argmin(axis=1).numpy()) # Returns the indices of the minimum values along axis 1.
  ```
  """
  return (-self).argmax(axis=axis, keepdim=keepdim)

Processing¤

avg_pool2d ¤

avg_pool2d(
    kernel_size=(2, 2),
    stride=None,
    dilation=1,
    padding=0,
    count_include_pad=True,
)

Applies average pooling over a tensor.

Note

unlike PyTorch, this implementation is not limited to only 2d pooling and instead works for any number of dimensions.

See: https://paperswithcode.com/method/average-pooling

t = Tensor.arange(25).reshape(1, 1, 5, 5)
print(t.avg_pool2d().numpy())
[[[[ 3.  5.]
   [13. 15.]]]]
print(t.avg_pool2d(padding=1).numpy())
[[[[ 0.    0.75  1.75]
   [ 3.75  9.   11.  ]
   [ 8.75 19.   21.  ]]]]

Source code in tinygrad/tensor.py
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
def avg_pool2d(self, kernel_size=(2,2), stride=None, dilation=1, padding=0, count_include_pad=True):
  """
  Applies average pooling over a tensor.

  NOTE: unlike PyTorch, this implementation is not limited to only 2d pooling and instead works for any number of dimensions.

  See: https://paperswithcode.com/method/average-pooling

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor.arange(25).reshape(1, 1, 5, 5)
  print(t.avg_pool2d().numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.avg_pool2d(padding=1).numpy())
  ```
  """
  padding_, axis = self._padding2d(padding, len(k_ := make_pair(kernel_size))), tuple(range(-len(k_), 0))
  def pool(x:Tensor) -> Tensor: return x.pad2d(padding_)._pool(k_, stride if stride is not None else k_, dilation)
  return pool(self).mean(axis=axis) if count_include_pad else pool(self).sum(axis=axis) / pool(self.ones_like()).sum(axis=axis)

max_pool2d ¤

max_pool2d(
    kernel_size=(2, 2), stride=None, dilation=1, padding=0
)

Applies max pooling over a tensor.

Note

unlike PyTorch, this implementation is not limited to only 2d pooling and instead works for any number of dimensions.

See: https://paperswithcode.com/method/max-pooling

t = Tensor.arange(25).reshape(1, 1, 5, 5)
print(t.max_pool2d().numpy())
[[[[ 6  8]
   [16 18]]]]
print(t.max_pool2d(padding=1).numpy())
[[[[ 0.  2.  4.]
   [10. 12. 14.]
   [20. 22. 24.]]]]

Source code in tinygrad/tensor.py
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
def max_pool2d(self, kernel_size=(2,2), stride=None, dilation=1, padding=0):
  """
  Applies max pooling over a tensor.

  NOTE: unlike PyTorch, this implementation is not limited to only 2d pooling and instead works for any number of dimensions.

  See: https://paperswithcode.com/method/max-pooling

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor.arange(25).reshape(1, 1, 5, 5)
  print(t.max_pool2d().numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.max_pool2d(padding=1).numpy())
  ```
  """
  padding_ = self._padding2d(padding, len(k_ := make_pair(kernel_size)))
  return self.pad2d(padding_, value=float('-inf'))._pool(k_, stride if stride is not None else k_, dilation).max(axis=tuple(range(-len(k_), 0)))

conv2d ¤

conv2d(
    weight: Tensor,
    bias: Tensor | None = None,
    groups=1,
    stride=1,
    dilation=1,
    padding=0,
    acc_dtype: DTypeLike | None = None,
) -> Tensor

Applies a convolution over a tensor with a given weight and optional bias.

Note

unlike PyTorch, this implementation is not limited to only 2d convolutions and instead works for any number of dimensions.

See: https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html

t = Tensor.arange(9).reshape(1, 1, 3, 3)
w = Tensor.ones(1, 1, 2, 2)
print(t.conv2d(w).numpy())
[[[[ 8. 12.]
   [20. 24.]]]]
Source code in tinygrad/tensor.py
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
def conv2d(self, weight:Tensor, bias:Tensor|None=None, groups=1, stride=1, dilation=1, padding=0, acc_dtype:DTypeLike|None=None) -> Tensor:
  """
  Applies a convolution over a tensor with a given `weight` and optional `bias`.

  NOTE: unlike PyTorch, this implementation is not limited to only 2d convolutions and instead works for any number of dimensions.

  See: https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor.arange(9).reshape(1, 1, 3, 3)
  w = Tensor.ones(1, 1, 2, 2)
  print(t.conv2d(w).numpy())
  ```
  """
  (bs,cin_), (cout,cin), HW = self.shape[:2], weight.shape[:2], weight.shape[2:]
  assert groups*cin == cin_ and len(self.shape) == len(weight.shape), f"Input Tensor shape {self.shape} does not match the shape of the weights {weight.shape}. ({groups*cin} vs. {cin_})"  # noqa: E501
  if isinstance(padding, (tuple,list)): assert len(padding) == 2*len(HW) or len(padding) == len(HW), f"Expected padding of length {2*len(HW)} or {len(HW)}, but got {len(padding)} for tensor of shape {self.shape}"  # noqa: E501
  padding_ = self._padding2d(padding, len(HW))

  # conv2d is a pooling op (with padding)
  x = self.pad2d(padding_)._pool(HW, stride, dilation)   # (bs, groups*cin, oy, ox, H, W)
  rcout, oyx = cout//groups, x.shape[2:-len(HW)]
  if not all(x == 3 for x in HW) or stride != 1 or dilation != 1 or not WINO:
    # normal conv
    x = x.reshape(bs, groups, cin, 1, *oyx, *HW).expand(bs, groups, cin, rcout, *oyx, *HW).permute(0,1,3,*[4+i for i in range(len(oyx))],2,*[4+len(oyx)+i for i in range(len(HW))])  # noqa: E501

    # conv! broadcasted to (bs, groups, rcout, *oyx, cin, *HW)
    ret = (x * weight.reshape(1, groups, rcout, *[1] * len(oyx), cin, *HW)).sum([-1-i for i in range(1+len(oyx))], keepdim=True, acc_dtype=acc_dtype).reshape(bs, cout, *oyx)  # noqa: E501
    return ret if bias is None else ret.add(bias.reshape(1, -1, *[1] * len(HW)))

  HWI, HWO = (6,) * len(HW), (4,) * len(HW)  # F(4x4,3x3) winograd tiles
  winograd_G = [[1/4, 0, 0], [-1/6, -1/6, -1/6], [-1/6, 1/6, -1/6], [1/24, 1/12, 1/6], [1/24, -1/12, 1/6], [0, 0, 1]]
  winograd_Bt = [[4, 0, -5, 0, 1, 0], [0, -4, -4, 1, 1, 0], [0, 4, -4, -1, 1, 0], [0, -2, -1, 2, 1, 0], [0, 2, -1, -2, 1, 0], [0, 4, 0, -5, 0, 1]]
  winograd_At = [[1, 1, 1, 1, 1, 0], [0, 1, -1, 2, -2, 0], [0, 1, 1, 4, 4, 0], [0, 1, -1, 8, -8, 1]] # applying At in pre-order doubles compile time

  # todo: stride == dilation
  # use padding to round up to 4x4 output tiles
  # (bs, cin_, tyx, HWI)
  d = self.pad2d(sum([[padding_[i*2], padding_[i*2+1] + (-(dim + sum(padding_[i * 2:(i + 1) * 2]) - 2) % 4)] for i, dim in enumerate(self.shape[-len(HW):])], []))._pool(HWI, HWO)  # noqa: E501
  # move HW to the front: # (HWI, bs, cin_, tyx)
  d = d.permute(*range(len(d.shape)-len(HW),len(d.shape)), *range(len(d.shape)-len(HW)))
  tyx = d.shape[-len(HWI):]  # dim of tiling

  g = weight.permute(*range(len(weight.shape)-len(HW),len(weight.shape)), *range(len(weight.shape)-len(HW)))  # move HW to the front

  # compute 6x6 winograd tiles: GgGt, BtdB
  # (HWI, groups * rcout, cin) -> (HWI, bs=1, groups, rcout, cin, tyx=(1,1))
  gfactors = _apply_winograd_matrix(winograd_G, g, len(HW)).reshape(*HWI, 1, groups, rcout, cin, *([1]*len(tyx)))
  # (HWI, bs, cin_, tyx) -> (HWI, bs, groups, 1 ,cin, *tyx)
  dfactors = _apply_winograd_matrix(winograd_Bt, d, len(HW)).reshape(*HWI, bs, groups, 1, cin, *tyx)

  # matmul; sum across cin: (HWI, bs, groups, rcout, *tyx); then HWI -> HWO: (HWO, bs, groups, rcout, *tyx)
  ret = _apply_winograd_matrix(winograd_At, (gfactors * dfactors).sum(axis=-1-len(HW), acc_dtype=acc_dtype), len(HW))

  # interleave tyx and HWO: (bs, groups, rcout, oy, HO, ox, WO)
  ret = ret.permute([*range(len(HW), len(ret.shape)-len(HW)), *[i+o for i in range(len(HW)) for o in [len(ret.shape)-len(HW),0]]])
  # merge groups and rcout, tyx and HWO: (bs, groups, cout, *yx), shrink to final
  ret = ret.reshape(bs, cout, *[c * HWO[i] for i, c in enumerate(tyx)]).shrink(tuple((0, s) for s in [bs, cout, *oyx]))

  return (ret if bias is None else ret.add(bias.reshape(1, -1, *[1 for _ in range(len(HW))]))).contiguous().contiguous_backward()

conv_transpose2d ¤

conv_transpose2d(
    weight: Tensor,
    bias: Optional[Tensor] = None,
    groups=1,
    stride=1,
    dilation=1,
    padding=0,
    output_padding=0,
) -> Tensor

Applies a transposed convolution over a tensor with a given weight and optional bias.

Note

unlike PyTorch, this implementation is not limited to only 2d transposed convolutions and instead works for any number of dimensions.

See: https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose2d.html

t = Tensor.arange(9).reshape(1, 1, 3, 3)
w = Tensor.ones(1, 1, 2, 2)
print(t.conv_transpose2d(w).numpy())
[[[[ 0.  1.  3.  2.]
   [ 3.  8. 12.  7.]
   [ 9. 20. 24. 13.]
   [ 6. 13. 15.  8.]]]]
Source code in tinygrad/tensor.py
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
def conv_transpose2d(self, weight:Tensor, bias:Optional[Tensor]=None, groups=1, stride=1, dilation=1, padding=0, output_padding=0) -> Tensor:
  """
  Applies a transposed convolution over a tensor with a given `weight` and optional `bias`.

  NOTE: unlike PyTorch, this implementation is not limited to only 2d transposed convolutions and instead works for any number of dimensions.

  See: https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose2d.html

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor.arange(9).reshape(1, 1, 3, 3)
  w = Tensor.ones(1, 1, 2, 2)
  print(t.conv_transpose2d(w).numpy())
  ```
  """
  x, w = self, weight.unflatten(0, (groups, -1)).transpose(1, 2).flip(*range(3, len(weight.shape)+1))
  HW = weight.shape[2:]
  stride, dilation, padding, output_padding = [make_pair(x, len(HW)) for x in (stride, dilation, padding, output_padding)]
  if any(s>1 for s in stride):
    # handle strides: (k) -> reshape -> (k,1) -> pad -> (k,s) -> reshape -> (k*s) -> shrink (k-(s-1))
    x = x.reshape(None, None, *flatten((k,1) for k in x.shape[2:]))
    x = x.pad((None, None, *flatten((None,(0,s-1)) for s in stride)))
    x = x.reshape(None, None, *[k*s for k,s in zip(x.shape[2::2], stride)])
    x = x.shrink((None, None, *[(0,k-(s-1)) for k,s in zip(x.shape[2:], stride)]))
  padding = flatten((((k-1)*d-p,(k-1)*d-p+op) for k,d,p,op in reversed(list(zip(HW, dilation, padding, output_padding)))))
  return x.conv2d(w.flatten(end_dim=1), groups=groups, bias=bias, dilation=dilation, padding=padding)

dot ¤

dot(
    w: Tensor, acc_dtype: Optional[DTypeLike] = None
) -> Tensor

Performs dot product between two tensors.

You can pass in the optional acc_dtype keyword argument to control the data type of the accumulation.

a = Tensor([[1, 2], [3, 4]])
b = Tensor([[5, 6], [7, 8]])
print(a.dot(b).numpy())
[[19 22]
 [43 50]]
Source code in tinygrad/tensor.py
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
def dot(self, w:Tensor, acc_dtype:Optional[DTypeLike]=None) -> Tensor:
  """
  Performs dot product between two tensors.

  You can pass in the optional `acc_dtype` keyword argument to control the data type of the accumulation.

  ```python exec="true" source="above" session="tensor" result="python"
  a = Tensor([[1, 2], [3, 4]])
  b = Tensor([[5, 6], [7, 8]])
  print(a.dot(b).numpy())
  ```
  """
  n1, n2 = len(self.shape), len(w.shape)
  assert n1 != 0 and n2 != 0, f"both arguments to matmul need to be at least 1D, but they are {n1}D and {n2}D"
  if (L:=self.shape[-1]) != (R:=w.shape[-min(n2, 2)]): raise AssertionError(f"shapes {self.shape} and {w.shape} cannot be multiplied ({L} != {R})")
  x = self.reshape(*self.shape[0:-1], *[1]*min(n1-1, n2-1, 1), self.shape[-1])
  w = w.reshape(*w.shape[0:-2], *[1]*min(n1-1, n2-1, 1), *w.shape[-min(n2, 2):]).transpose(-1, -min(n2, 2))
  return (x*w).sum(-1, acc_dtype=acc_dtype).cast(least_upper_dtype(x.dtype, w.dtype) if acc_dtype is None else acc_dtype)

matmul ¤

matmul(
    x: Tensor,
    reverse=False,
    acc_dtype: Optional[DTypeLike] = None,
) -> Tensor

Performs matrix multiplication between two tensors.

You can pass in the reverse keyword argument to control the order of the matrix multiplication. You can pass in the optional acc_dtype keyword argument to control the data type of the accumulation.

a = Tensor([[1, 2], [3, 4]])
b = Tensor([[5, 6], [7, 8]])
print(a.matmul(b).numpy())
[[19 22]
 [43 50]]
Source code in tinygrad/tensor.py
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
def matmul(self, x:Tensor, reverse=False, acc_dtype:Optional[DTypeLike]=None) -> Tensor:
  """
  Performs matrix multiplication between two tensors.

  You can pass in the `reverse` keyword argument to control the order of the matrix multiplication.
  You can pass in the optional `acc_dtype` keyword argument to control the data type of the accumulation.

  ```python exec="true" source="above" session="tensor" result="python"
  a = Tensor([[1, 2], [3, 4]])
  b = Tensor([[5, 6], [7, 8]])
  print(a.matmul(b).numpy())
  ```
  """
  return x.dot(self, acc_dtype=acc_dtype) if reverse else self.dot(x, acc_dtype=acc_dtype)

einsum staticmethod ¤

einsum(
    formula: str,
    *raw_xs,
    acc_dtype: Optional[DTypeLike] = None
) -> Tensor

Sums the product of the elements of the input tensors according to a formula based on the Einstein summation convention.

See: https://pytorch.org/docs/stable/generated/torch.einsum.html

x = Tensor([[1, 2], [3, 4]])
y = Tensor([[5, 6], [7, 8]])
print(Tensor.einsum("ij,ij->", x, y).numpy())
70
Source code in tinygrad/tensor.py
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
@staticmethod
def einsum(formula:str, *raw_xs, acc_dtype:Optional[DTypeLike]=None) -> Tensor:
  """
  Sums the product of the elements of the input tensors according to a formula based on the Einstein summation convention.

  See: https://pytorch.org/docs/stable/generated/torch.einsum.html

  ```python exec="true" source="above" session="tensor" result="python"
  x = Tensor([[1, 2], [3, 4]])
  y = Tensor([[5, 6], [7, 8]])
  print(Tensor.einsum("ij,ij->", x, y).numpy())
  ```
  """
  def parse_formula(formula: str, *operands: Tensor):
    if "." in formula:
      ell_chars, ell_longest = "".join(set(string.ascii_letters) - set(formula)), 0
      for i, inp in enumerate(filter(lambda x: "..." in x, inputs := formula.split("->")[0].split(","))):
        if (ell_count := max(operands[i].ndim, 1) - (len(inp) - 3)) > ell_longest: ell_longest = ell_count
        inputs[i] = inp.replace("...", "" if ell_count == 0 else ell_chars[-ell_count:])
      inputs_str, out_ellipse = ",".join(inputs), "" if ell_longest == 0 else ell_chars[-ell_longest:]
      return (inputs_str, formula.split("->")[1].replace("...", out_ellipse)) if "->" in formula else (inputs_str, \
          out_ellipse + ''.join(sorted(c for c in inputs_str if inputs_str.count(c) == 1 and c.isalpha() and c not in out_ellipse)))
    return formula.split("->") if "->" in formula else (formula, ''.join(c for c in sorted(formula) if formula.count(c) == 1 and c.isalpha()))

  xs:Tuple[Tensor, ...] = argfix(*raw_xs)
  inputs_str, output = parse_formula(formula.replace(" ", ""), *xs)
  inputs = inputs_str.split(",")
  assert len(xs) == len(inputs), f"number of inputs doesn't match number of operands in formula, expected {len(inputs)}, got {len(xs)}"

  # map the value of each letter in the formula
  letter_val = sorted(merge_dicts([dict(zip(letters, tensor.shape)) for letters, tensor in zip(inputs, xs)]).items())

  xs_:List[Tensor] = []
  lhs = [sorted(enumerate(s), key=lambda e:e[1]) for s in inputs]
  for x,(order,letters) in zip(xs, [list(zip(*l)) for l in lhs]):
    # permute to the sorted letter order, then reshape/expand to create dimensions for the missing letters
    xs_.append(x.permute(order).reshape([val if letter in letters else 1 for letter,val in letter_val]).expand([val for _,val in letter_val]))

  # determine the inverse permutation to revert back to original order
  rhs_letter_order = argsort(list(output))
  rhs_order = argsort(rhs_letter_order)

  # sum over all axes that's not in the output, then permute to the output order
  return functools.reduce(lambda a,b:a*b, xs_) \
    .sum(axis=[axis for axis,(letter,_) in enumerate(letter_val) if letter not in output],acc_dtype=acc_dtype).permute(rhs_order)

cumsum ¤

cumsum(axis: int = 0) -> Tensor

Computes the cumulative sum of the tensor along the specified axis.

You can pass in the axis keyword argument to control the axis along which the cumulative sum is computed.

t = Tensor.ones(2, 3)
print(t.numpy())
[[1. 1. 1.]
 [1. 1. 1.]]
print(t.cumsum(1).numpy())
[[1. 2. 3.]
 [1. 2. 3.]]

Source code in tinygrad/tensor.py
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
def cumsum(self, axis:int=0) -> Tensor:
  """
  Computes the cumulative sum of the tensor along the specified axis.

  You can pass in the `axis` keyword argument to control the axis along which the cumulative sum is computed.

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor.ones(2, 3)
  print(t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.cumsum(1).numpy())
  ```
  """
  axis = self._resolve_dim(axis)
  if self.ndim == 0 or 0 in self.shape: return self
  # TODO: someday the optimizer will find this on it's own
  # for now this is a two stage cumsum
  SPLIT = 256
  if self.shape[axis] <= SPLIT*2: return self._cumsum(axis)
  ret = self.transpose(axis,-1).pad2d((round_up(self.shape[axis], SPLIT)-self.shape[axis], 0))
  ret = ret.unflatten(-1, (-1, SPLIT))._cumsum(-1)
  base_add = ret[..., -1]._cumsum(-1, _first_zero=True)
  base_add = base_add.unsqueeze(-1).expand(*base_add.shape, ret.shape[-1])
  def fix(x:Tensor): return x.flatten(start_dim=-2)[..., -self.shape[axis]:].transpose(axis,-1)
  return fix(ret) + fix(base_add)

triu ¤

triu(diagonal: int = 0) -> Tensor

Returns the upper triangular part of the tensor, the other elements are set to 0.

The argument diagonal determines which diagonal is on the boundary. diagonal = 0 means the main diagonal. Positive diagonal means above the main diagonal, and negative diagonal means below the main diagonal.

t = Tensor([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
print(t.numpy())
[[ 1  2  3  4]
 [ 5  6  7  8]
 [ 9 10 11 12]]
print(t.triu(diagonal=0).numpy())
[[ 1  2  3  4]
 [ 0  6  7  8]
 [ 0  0 11 12]]
print(t.triu(diagonal=1).numpy())
[[ 0  2  3  4]
 [ 0  0  7  8]
 [ 0  0  0 12]]
print(t.triu(diagonal=-1).numpy())
[[ 1  2  3  4]
 [ 5  6  7  8]
 [ 0 10 11 12]]

Source code in tinygrad/tensor.py
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
def triu(self, diagonal:int=0) -> Tensor:
  """
  Returns the upper triangular part of the tensor, the other elements are set to 0.

  The argument `diagonal` determines which diagonal is on the boundary. `diagonal = 0` means the main diagonal.
  Positive `diagonal` means above the main diagonal, and negative `diagonal` means below the main diagonal.

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
  print(t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.triu(diagonal=0).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.triu(diagonal=1).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.triu(diagonal=-1).numpy())
  ```
  """
  return Tensor._tri(self.shape[-2], self.shape[-1], diagonal=diagonal, device=self.device, dtype=dtypes.bool).where(self, 0).cast(self.dtype)

tril ¤

tril(diagonal: int = 0) -> Tensor

Returns the lower triangular part of the tensor, the other elements are set to 0.

The argument diagonal determines which diagonal is on the boundary. diagonal = 0 means the main diagonal. Positive diagonal means above the main diagonal, and negative diagonal means below the main diagonal.

t = Tensor([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
print(t.numpy())
[[ 1  2  3  4]
 [ 5  6  7  8]
 [ 9 10 11 12]]
print(t.tril(diagonal=0).numpy())
[[ 1  0  0  0]
 [ 5  6  0  0]
 [ 9 10 11  0]]
print(t.tril(diagonal=1).numpy())
[[ 1  2  0  0]
 [ 5  6  7  0]
 [ 9 10 11 12]]
print(t.tril(diagonal=-1).numpy())
[[ 0  0  0  0]
 [ 5  0  0  0]
 [ 9 10  0  0]]

Source code in tinygrad/tensor.py
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
def tril(self, diagonal:int=0) -> Tensor:
  """
  Returns the lower triangular part of the tensor, the other elements are set to 0.

  The argument `diagonal` determines which diagonal is on the boundary. `diagonal = 0` means the main diagonal.
  Positive `diagonal` means above the main diagonal, and negative `diagonal` means below the main diagonal.

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
  print(t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.tril(diagonal=0).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.tril(diagonal=1).numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.tril(diagonal=-1).numpy())
  ```
  """
  return Tensor._tri(self.shape[-2], self.shape[-1], diagonal=diagonal+1, device=self.device, dtype=dtypes.bool).where(0, self).cast(self.dtype)

interpolate ¤

interpolate(
    size: Tuple[int, ...],
    mode: str = "linear",
    align_corners: bool = False,
) -> Tensor

Downsamples or Upsamples to the input size, accepts 0 to N batch dimensions.

The interpolation algorithm is selected with mode which currently only supports linear, nearest and nearest-exact. To run bilinear or trilinear, pass in a 2D or 3D size.

t = Tensor([[1, 2, 3, 4], [21, 22, 23, 24], [41, 42, 43, 44]])
print(t.numpy())
[[ 1  2  3  4]
 [21 22 23 24]
 [41 42 43 44]]
print(t.interpolate(size=(2,3), mode="linear").numpy())
[[ 6  7  8]
 [36 37 38]]

Source code in tinygrad/tensor.py
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
def interpolate(self, size:Tuple[int, ...], mode:str="linear", align_corners:bool=False) -> Tensor:
  """
  Downsamples or Upsamples to the input `size`, accepts 0 to N batch dimensions.

  The interpolation algorithm is selected with `mode` which currently only supports `linear`, `nearest` and `nearest-exact`.
  To run `bilinear` or `trilinear`, pass in a 2D or 3D size.

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor([[1, 2, 3, 4], [21, 22, 23, 24], [41, 42, 43, 44]])
  print(t.numpy())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  print(t.interpolate(size=(2,3), mode="linear").numpy())
  ```
  """
  assert isinstance(size, (tuple,list)) and all_int(size) and 0 < len(size) <= self.ndim, f"invalid {size=}"
  assert mode in ("linear", "nearest", "nearest-exact"), "only supports linear, nearest or nearest-exact interpolate"
  assert not (align_corners and mode != "linear"), "align_corners option can only be set with the interpolating mode linear"
  x, expand = self, list(self.shape)
  for i in range(-1,-len(size)-1,-1):
    scale = (self.shape[i] - int(align_corners)) / (size[i] - int(align_corners))
    arr, reshape = Tensor.arange(size[i], dtype=dtypes.float32, device=self.device), [1] * self.ndim
    reshape[i] = expand[i] = size[i]
    if mode == "linear":
      index = (scale*arr if align_corners else (scale*(arr+0.5))-0.5).clip(0, self.shape[i]-1)
      low, high, perc = [y.reshape(reshape).expand(expand) for y in (index.floor(), index.ceil(), index - index.floor())]
      x = x.gather(i, low).lerp(x.gather(i, high), perc)
    else:
      index = (scale*(arr+0.5) if mode=="nearest-exact" else scale*arr).cast(dtypes.int32).reshape(reshape).expand(expand)
      x = x.gather(i, index)
  return x.cast(self.dtype)

Neural Network (functional)¤

linear ¤

linear(weight: Tensor, bias: Optional[Tensor] = None)

Applies a linear transformation to self using weight and bias.

See: https://pytorch.org/docs/stable/generated/torch.nn.Linear.html

t = Tensor([[1, 2], [3, 4]])
weight = Tensor([[1, 2], [3, 4]])
bias = Tensor([1, 2])
print(t.linear(weight, bias).numpy())
[[ 8 12]
 [16 24]]
Source code in tinygrad/tensor.py
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
def linear(self, weight:Tensor, bias:Optional[Tensor]=None):
  """
  Applies a linear transformation to `self` using `weight` and `bias`.

  See: https://pytorch.org/docs/stable/generated/torch.nn.Linear.html

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor([[1, 2], [3, 4]])
  weight = Tensor([[1, 2], [3, 4]])
  bias = Tensor([1, 2])
  print(t.linear(weight, bias).numpy())
  ```
  """
  x = self.mul(weight) if len(weight.shape) == 1 else self.dot(weight)
  return x.add(bias) if bias is not None else x

sequential ¤

sequential(ll: List[Callable[[Tensor], Tensor]])

Applies a sequence of functions to self chaining the output of each function to the input of the next.

t = Tensor([1, 2, 3])
print(t.sequential([lambda x: x * 2, lambda x: x + 1]).numpy())
[3 5 7]
Source code in tinygrad/tensor.py
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
def sequential(self, ll:List[Callable[[Tensor], Tensor]]):
  """
  Applies a sequence of functions to `self` chaining the output of each function to the input of the next.

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor([1, 2, 3])
  print(t.sequential([lambda x: x * 2, lambda x: x + 1]).numpy())
  ```
  """
  return functools.reduce(lambda x,f: f(x), ll, self)

layernorm ¤

layernorm(axis=-1, eps: float = 1e-05) -> Tensor

Applies Layer Normalization over a mini-batch of inputs.

t = Tensor.randn(8, 10, 16) * 2 + 8
print(t.mean().item(), t.std().item())
8.071012496948242 1.9488691091537476
t = t.layernorm()
print(t.mean().item(), t.std().item())
-9.22094933741846e-09 1.0003890991210938

Source code in tinygrad/tensor.py
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
def layernorm(self, axis=-1, eps:float=1e-5) -> Tensor:
  """
  Applies Layer Normalization over a mini-batch of inputs.

  - Described: https://paperswithcode.com/method/layer-normalization
  - Paper: https://arxiv.org/abs/1607.06450v1

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor.randn(8, 10, 16) * 2 + 8
  print(t.mean().item(), t.std().item())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  t = t.layernorm()
  print(t.mean().item(), t.std().item())
  ```
  """
  y = (self - self.mean(axis, keepdim=True))
  return y.mul((y*y).mean(axis, keepdim=True).add(eps).rsqrt())

batchnorm ¤

batchnorm(
    weight: Optional[Tensor],
    bias: Optional[Tensor],
    mean: Tensor,
    invstd: Tensor,
    axis: Union[int, Tuple[int, ...]] = 1,
) -> Tensor

Applies Batch Normalization over a mini-batch of inputs.

t = Tensor.randn(8, 4, 16, 16) * 2 + 8
print(t.mean().item(), t.std().item())
7.981656551361084 2.002045154571533
t = t.batchnorm(None, None, t.mean(axis=(0,2,3)), t.var(axis=(0,2,3)).add(1e-5).rsqrt())
print(t.mean().item(), t.std().item())
1.3217827188327647e-07 0.9998158812522888

Source code in tinygrad/tensor.py
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
def batchnorm(self, weight:Optional[Tensor], bias:Optional[Tensor], mean:Tensor, invstd:Tensor, axis:Union[int,Tuple[int,...]]=1) -> Tensor:
  """
  Applies Batch Normalization over a mini-batch of inputs.

  - Described: https://paperswithcode.com/method/batch-normalization
  - Paper: https://arxiv.org/abs/1502.03167

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor.randn(8, 4, 16, 16) * 2 + 8
  print(t.mean().item(), t.std().item())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  t = t.batchnorm(None, None, t.mean(axis=(0,2,3)), t.var(axis=(0,2,3)).add(1e-5).rsqrt())
  print(t.mean().item(), t.std().item())
  ```
  """
  axis_ = argfix(axis)
  shape = tuple(s if ax in axis_ else 1 for ax, s in enumerate(self.shape))
  x = self - mean.reshape(shape)
  if weight is not None: x = x * weight.reshape(shape)
  ret = x.mul(invstd.reshape(shape) if len(invstd.shape) == len(axis_) else invstd)
  return (ret + bias.reshape(shape)) if bias is not None else ret

dropout ¤

dropout(p=0.5) -> Tensor

Applies dropout to self.

Note

dropout is only applied when Tensor.training is True.

Tensor.manual_seed(42)
t = Tensor.randn(2, 2)
with Tensor.train():
  print(t.dropout().numpy())
[[-2.6226 -0.    ]
 [-1.3097  0.    ]]
Source code in tinygrad/tensor.py
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
def dropout(self, p=0.5) -> Tensor:
  """
  Applies dropout to `self`.

  NOTE: dropout is only applied when `Tensor.training` is `True`.

  - Described: https://paperswithcode.com/method/dropout
  - Paper: https://jmlr.org/papers/v15/srivastava14a.html

  ```python exec="true" source="above" session="tensor" result="python"
  Tensor.manual_seed(42)
  t = Tensor.randn(2, 2)
  with Tensor.train():
    print(t.dropout().numpy())
  ```
  """
  if not Tensor.training or p == 0: return self
  return self * (Tensor.rand(*self.shape, requires_grad=False, dtype=dtypes.default_float, device=self.device) >= p) * (1/(1.0 - p))

one_hot ¤

one_hot(num_classes: int = -1) -> Tensor

Converts self to a one-hot tensor.

num_classes defaults to -1, which means num_classes will be inferred as max(self) + 1.

t = Tensor([0, 1, 3, 3, 4])
print(t.one_hot(5).numpy())
[[1 0 0 0 0]
 [0 1 0 0 0]
 [0 0 0 1 0]
 [0 0 0 1 0]
 [0 0 0 0 1]]
Source code in tinygrad/tensor.py
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
def one_hot(self, num_classes:int=-1) -> Tensor:
  """
  Converts `self` to a one-hot tensor.

  `num_classes` defaults to -1, which means num_classes will be inferred as max(self) + 1.

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor([0, 1, 3, 3, 4])
  print(t.one_hot(5).numpy())
  ```
  """
  if num_classes == -1: num_classes = (self.max()+1).item()
  return (self[..., None] == Tensor.arange(num_classes, requires_grad=False, device=self.device)).where(1, 0)

scaled_dot_product_attention ¤

scaled_dot_product_attention(
    key: Tensor,
    value: Tensor,
    attn_mask: Optional[Tensor] = None,
    dropout_p: float = 0.0,
    is_causal: bool = False,
) -> Tensor

Computes scaled dot-product attention. self is the query tensor, key is the key tensor, and value is the value tensor.

q = Tensor.randn(2, 4, 8)
k = Tensor.randn(2, 4, 8)
v = Tensor.randn(2, 4, 8)
print(q.scaled_dot_product_attention(k, v).numpy())
[[[ 0.7096 -1.3188 -0.5629  0.6426 -0.025  -0.0636 -0.1879  0.3882]
  [ 0.6264 -0.7172 -0.3801  0.3077 -0.5498 -1.1599 -0.0885  0.3348]
  [ 0.6083 -0.5665 -0.2999  0.2557 -0.1295 -0.5506 -0.3255  0.1949]
  [ 0.7322 -1.4959 -0.6557  0.7118 -0.4007 -0.5873  0.0327  0.5346]]

 [[ 0.1278 -0.3112 -0.4018  0.0586 -0.3478 -0.0718 -0.904  -0.1595]
  [ 0.284  -0.2957 -0.5639 -0.1012 -0.5746 -0.4352 -1.0691 -0.2931]
  [-0.4256 -0.2026  0.4066  0.694   0.2838  0.494  -0.1331 -0.0593]
  [ 0.1401 -0.4061 -0.429   0.0877 -0.3795  0.037  -0.9037 -0.0037]]]
Source code in tinygrad/tensor.py
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
def scaled_dot_product_attention(self, key:Tensor, value:Tensor, attn_mask:Optional[Tensor]=None,
                                 dropout_p:float=0.0, is_causal:bool=False) -> Tensor:
  """
  Computes scaled dot-product attention.
  `self` is the query tensor, `key` is the key tensor, and `value` is the value tensor.

  - Described: https://paperswithcode.com/method/scaled
  - Paper: https://arxiv.org/abs/1706.03762v7

  ```python exec="true" source="above" session="tensor" result="python"
  q = Tensor.randn(2, 4, 8)
  k = Tensor.randn(2, 4, 8)
  v = Tensor.randn(2, 4, 8)
  print(q.scaled_dot_product_attention(k, v).numpy())
  ```
  """
  # NOTE: it also works when `key` and `value` have symbolic shape.
  assert all_int(self.shape), f"does not support symbolic shape {self.shape}"
  if is_causal: attn_mask = Tensor.ones(self.shape[-2], key.shape[-2], requires_grad=False, device=self.device).tril(0).cast(dtypes.bool)
  if attn_mask is not None and attn_mask.dtype == dtypes.bool: attn_mask = (attn_mask == 0).where(-float("inf"), 0)
  qk = self.matmul(key.transpose(-2,-1), acc_dtype=least_upper_dtype(self.dtype, key.dtype, dtypes.float32)) / math.sqrt(self.shape[-1])
  return ((qk+attn_mask) if attn_mask is not None else qk).softmax(-1).cast(self.dtype).dropout(dropout_p) @ value

binary_crossentropy ¤

binary_crossentropy(
    Y: Tensor, reduction: ReductionStr = "mean"
) -> Tensor

Computes the binary cross-entropy loss between self and Y.

See: https://pytorch.org/docs/stable/generated/torch.nn.BCELoss.html

t = Tensor([0.1, 0.9, 0.2])
Y = Tensor([0, 1, 0])
print(t.binary_crossentropy(Y).item())
0.14462155103683472
Source code in tinygrad/tensor.py
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
def binary_crossentropy(self, Y:Tensor, reduction:ReductionStr="mean") -> Tensor:
  """
  Computes the binary cross-entropy loss between `self` and `Y`.

  See: https://pytorch.org/docs/stable/generated/torch.nn.BCELoss.html

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor([0.1, 0.9, 0.2])
  Y = Tensor([0, 1, 0])
  print(t.binary_crossentropy(Y).item())
  ```
  """
  return (-Y*self.log() - (1-Y)*(1-self).log())._do_reduction(reduction)

binary_crossentropy_logits ¤

binary_crossentropy_logits(
    Y: Tensor, reduction: ReductionStr = "mean"
) -> Tensor

Computes the binary cross-entropy loss between self and Y where self is logits.

See: https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html

t = Tensor([-1, 2, -3])
Y = Tensor([0, 1, 0])
print(t.binary_crossentropy_logits(Y).item())
0.16292566061019897
Source code in tinygrad/tensor.py
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
def binary_crossentropy_logits(self, Y:Tensor, reduction:ReductionStr="mean") -> Tensor:
  """
  Computes the binary cross-entropy loss between `self` and `Y` where `self` is logits.

  See: https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor([-1, 2, -3])
  Y = Tensor([0, 1, 0])
  print(t.binary_crossentropy_logits(Y).item())
  ```
  """
  return (self.maximum(0) - Y * self + (1 + self.abs().neg().exp()).log())._do_reduction(reduction)

sparse_categorical_crossentropy ¤

sparse_categorical_crossentropy(
    Y: Tensor,
    ignore_index=-1,
    label_smoothing=0.0,
    reduction: ReductionStr = "mean",
) -> Tensor

Computes the sparse categorical cross-entropy loss between self and Y.

Note

self is logits and Y is the target labels. NOTE: unlike PyTorch, this function expects the class axis to be -1

See: https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html

t = Tensor([[-1, 2, -3], [1, -2, 3]])
Y = Tensor([1, 2])
print(t.sparse_categorical_crossentropy(Y).item())
0.09391524642705917
Source code in tinygrad/tensor.py
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
def sparse_categorical_crossentropy(self, Y:Tensor, ignore_index=-1, label_smoothing=0.0, reduction:ReductionStr="mean") -> Tensor:
  """
  Computes the sparse categorical cross-entropy loss between `self` and `Y`.

  NOTE: `self` is logits and `Y` is the target labels.
  NOTE: unlike PyTorch, this function expects the class axis to be -1

  See: https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor([[-1, 2, -3], [1, -2, 3]])
  Y = Tensor([1, 2])
  print(t.sparse_categorical_crossentropy(Y).item())
  ```
  """
  assert 0.0 <= label_smoothing <= 1.0, "label_smoothing must be in [0.0, 1.0]"
  assert reduction in ("mean", "sum", "none"), "reduction must be one of ['mean', 'sum', 'none']"
  log_probs, loss_mask = self.log_softmax(), (Y != ignore_index)
  y_counter = Tensor.arange(self.shape[-1], requires_grad=False, device=self.device).unsqueeze(0).expand(Y.numel(), self.shape[-1])
  y = ((y_counter == Y.flatten().reshape(-1, 1)) * loss_mask.reshape(-1, 1)).reshape(*Y.shape, self.shape[-1])
  smoothing = label_smoothing * (log_probs.mean(-1) * loss_mask)
  unreduced = ((1 - label_smoothing) * (log_probs * y).sum(-1) + smoothing)
  # NOTE: because of ignore_index, we can't use Tensor.mean (so can't use `_do_reduction` here)
  return -(unreduced.sum() / loss_mask.sum() if reduction == "mean" else (unreduced.sum() if reduction == "sum" else unreduced))

cross_entropy ¤

cross_entropy(
    Y: Tensor,
    reduction: ReductionStr = "mean",
    label_smoothing: float = 0.0,
) -> Tensor

Compute the cross entropy loss between input logits and target.

Note

self are logits and Y are the target labels or class probabilities.

See: https://pytorch.org/docs/stable/generated/torch.nn.functional.cross_entropy.html

t = Tensor([[-1, 2, -3], [1, -2, 3]])
Y = Tensor([1, 2])
print(t.cross_entropy(Y).item())
0.09391524642705917
t = Tensor([[-1, 2, -3], [1, -2, 3]])
Y = Tensor([1, 2])
print(t.cross_entropy(Y, reduction='none').numpy())
[0.055  0.1328]

Source code in tinygrad/tensor.py
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
def cross_entropy(self, Y:Tensor, reduction:ReductionStr="mean", label_smoothing:float=0.0) -> Tensor:
  """
  Compute the cross entropy loss between input logits and target.

  NOTE: `self` are logits and `Y` are the target labels or class probabilities.

  See: https://pytorch.org/docs/stable/generated/torch.nn.functional.cross_entropy.html

  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor([[-1, 2, -3], [1, -2, 3]])
  Y = Tensor([1, 2])
  print(t.cross_entropy(Y).item())
  ```
  ```python exec="true" source="above" session="tensor" result="python"
  t = Tensor([[-1, 2, -3], [1, -2, 3]])
  Y = Tensor([1, 2])
  print(t.cross_entropy(Y, reduction='none').numpy())
  ```
  """
  assert 0.0 <= label_smoothing <= 1.0, "label_smoothing must be in [0.0, 1.0]"
  Y = Y.one_hot(num_classes=cast(int, self.shape[1])) if Y.ndim < 2 else Y
  Y = (1 - label_smoothing)*Y + label_smoothing / cast(int, Y.shape[1])
  ret = -self.log_softmax(axis=1).mul(Y).sum(axis=1)
  return ret._do_reduction(reduction)