Complex Ops
Reduce¤
sum
¤
sum(
axis: int | Sequence[int] | None = None,
keepdim=False,
dtype: DTypeLike | None = None,
) -> Tensor
Returns the sum of the elements of the tensor along the specified axis or axes.
You can pass in axis and keepdim keyword arguments to control the axis along
which the maximum is computed and whether the reduced dimensions are retained.
You can pass in dtype keyword argument to control the data type of the accumulation.
If not specified, the accumulation data type is chosen based on the input tensor's data type.
t = Tensor.arange(6).reshape(2, 3)
print(t.numpy())
[[0 1 2]
[3 4 5]]
print(t.sum().numpy())
15
print(t.sum(axis=0).numpy())
[3 5 7]
print(t.sum(axis=1).numpy())
[ 3 12]
Source code in tinygrad/tensor.py
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 | |
prod
¤
prod(
axis: int | Sequence[int] | None = None,
keepdim=False,
dtype: DTypeLike | None = None,
) -> Tensor
Returns the product of the elements of the tensor along the specified axis or axes.
You can pass in axis and keepdim keyword arguments to control the axis along
which the maximum is computed and whether the reduced dimensions are retained.
You can pass in dtype keyword argument to control the data type of the accumulation.
If not specified, the accumulation data type is chosen based on the input tensor's data type.
t = Tensor([-1, -2, -3, 1, 2, 3]).reshape(2, 3)
print(t.numpy())
[[-1 -2 -3]
[ 1 2 3]]
print(t.prod().numpy())
-36
print(t.prod(axis=0).numpy())
[-1 -4 -9]
print(t.prod(axis=1).numpy())
[-6 6]
Source code in tinygrad/tensor.py
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 | |
max
¤
Returns the maximum value of the tensor along the specified axis or axes.
You can pass in axis and keepdim keyword arguments to control the axis along
which the maximum is computed and whether the reduced dimensions are retained.
t = Tensor([[1, 0, 2], [5, 4, 3]])
print(t.numpy())
[[1 0 2]
[5 4 3]]
print(t.max().numpy())
5
print(t.max(axis=0).numpy())
[5 4 3]
print(t.max(axis=1, keepdim=True).numpy())
[[2]
[5]]
Source code in tinygrad/tensor.py
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 | |
min
¤
Returns the minimum value of the tensor along the specified axis or axes.
You can pass in axis and keepdim keyword arguments to control the axis along
which the minimum is computed and whether the reduced dimensions are retained.
t = Tensor([[1, 0, 2], [5, 4, 3]])
print(t.numpy())
[[1 0 2]
[5 4 3]]
print(t.min().numpy())
0
print(t.min(axis=0).numpy())
[1 0 2]
print(t.min(axis=1, keepdim=True).numpy())
[[0]
[3]]
Source code in tinygrad/tensor.py
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 | |
any
¤
Tests if any element evaluates to True along the specified axis or axes.
You can pass in axis and keepdim keyword arguments to control the reduce axis and whether the reduced dimensions are retained.
t = Tensor([[True, True], [True, False], [False, False]])
print(t.numpy())
[[ True True]
[ True False]
[False False]]
print(t.any().numpy())
True
print(t.any(axis=0).numpy())
[ True True]
print(t.any(axis=1, keepdim=True).numpy())
[[ True]
[ True]
[False]]
Source code in tinygrad/tensor.py
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 | |
all
¤
Tests if all element evaluates to True along the specified axis or axes.
You can pass in axis and keepdim keyword arguments to control the reduce axis and whether the reduced dimensions are retained.
t = Tensor([[True, True], [True, False], [False, False]])
print(t.numpy())
[[ True True]
[ True False]
[False False]]
print(t.all().numpy())
False
print(t.all(axis=0).numpy())
[False False]
print(t.all(axis=1, keepdim=True).numpy())
[[ True]
[False]
[False]]
Source code in tinygrad/tensor.py
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 | |
isclose
¤
Returns a new tensor with element-wise comparison of closeness to other within a tolerance.
The rtol and atol keyword arguments control the relative and absolute tolerance of the comparison.
By default, two NaN values are not close to each other. If equal_nan is True, two NaN values are considered close.
print(Tensor([1e-7, 1e-8, 1e-9, float('nan')]).isclose(Tensor([0.0, 0.0, 0.0, float('nan')])).numpy())
[False True True False]
print(Tensor([float('nan')]).isclose(Tensor([float('nan')]), equal_nan=True).numpy())
[ True]
Source code in tinygrad/tensor.py
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 | |
allclose
¤
Check if all self and other are close. Return True or False.
Source code in tinygrad/tensor.py
1766 1767 1768 1769 1770 | |
mean
¤
Returns the mean value of the tensor along the specified axis or axes.
You can pass in axis and keepdim keyword arguments to control the axis along
which the mean is computed and whether the reduced dimensions are retained.
Tensor.manual_seed(42)
t = Tensor.normal(2, 3, mean=2.5, std=0.5)
print(t.numpy())
[[2.9889 2.7339 2.7763]
[2.3356 2.0722 2.6376]]
print(t.mean().numpy())
2.5907671
print(t.mean(axis=0).numpy())
[2.6623 2.4031 2.707 ]
print(t.mean(axis=1).numpy())
[2.833 2.3485]
Source code in tinygrad/tensor.py
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 | |
var
¤
Returns the variance of the tensor along the specified axis or axes.
You can pass in axis, keepdim, and correction keyword arguments to control the axis along
which the variance is computed, whether the reduced dimensions are retained, and the Bessel's correction applied.
Tensor.manual_seed(42)
t = Tensor.normal(2, 3, mean=2.5, std=0.5)
print(t.numpy())
[[2.9889 2.7339 2.7763]
[2.3356 2.0722 2.6376]]
print(t.var().numpy())
0.10992539
print(t.var(axis=0).numpy())
[0.2134 0.2189 0.0096]
print(t.var(axis=1).numpy())
[0.0187 0.08 ]
Source code in tinygrad/tensor.py
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 | |
var_mean
¤
var_mean(
axis: int | Sequence[int] | None = None,
keepdim=False,
correction=1,
) -> tuple[Tensor, Tensor]
Calculates the variance and mean over the dimensions specified by dim.
Syntactic sugar around Tensor.var and Tensor.mean to match torch.var_mean.
Tensor.manual_seed(42)
t = Tensor.normal(2, 3, mean=2.5, std=0.5)
print(t.numpy())
[[2.9889 2.7339 2.7763]
[2.3356 2.0722 2.6376]]
var, mean = t.var_mean()
print(var.numpy(), mean.numpy())
0.10992539 2.5907671
Source code in tinygrad/tensor.py
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 | |
std
¤
Returns the standard deviation of the tensor along the specified axis or axes.
You can pass in axis, keepdim, and correction keyword arguments to control the axis along
which the standard deviation is computed, whether the reduced dimensions are retained, and the Bessel's correction applied.
Tensor.manual_seed(42)
t = Tensor.normal(2, 3, mean=2.5, std=0.5)
print(t.numpy())
[[2.9889 2.7339 2.7763]
[2.3356 2.0722 2.6376]]
print(t.std().numpy())
0.33154997
print(t.std(axis=0).numpy())
[0.462 0.4679 0.0981]
print(t.std(axis=1).numpy())
[0.1367 0.2829]
Source code in tinygrad/tensor.py
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 | |
std_mean
¤
std_mean(
axis: int | Sequence[int] | None = None,
keepdim=False,
correction=1,
) -> tuple[Tensor, Tensor]
Calculates the standard deviation and mean over the dimensions specified by dim.
Syntactic sugar around Tensor.std and Tensor.mean to match torch.std_mean.
Tensor.manual_seed(42)
t = Tensor.normal(2, 3, mean=2.5, std=0.5)
print(t.numpy())
[[2.9889 2.7339 2.7763]
[2.3356 2.0722 2.6376]]
std, mean = t.std_mean()
print(std.numpy(), mean.numpy())
0.33154997 2.5907671
Source code in tinygrad/tensor.py
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 | |
softmax
¤
softmax(axis=-1, dtype: DTypeLike | None = None) -> Tensor
Applies the softmax function to the tensor along the specified axis.
Rescales the elements of the tensor such that they lie in the range [0, 1] and sum to 1.
You can pass in the axis keyword argument to control the axis along which the softmax is computed.
Tensor.manual_seed(42)
t = Tensor.randn(2, 3)
print(t.numpy())
[[ 0.9779 0.4678 0.5526]
[-0.3288 -0.8555 0.2753]]
print(t.softmax().numpy())
[[0.4436 0.2664 0.29 ]
[0.2924 0.1727 0.5349]]
print(t.softmax(axis=0).numpy())
[[0.787 0.7897 0.5689]
[0.213 0.2103 0.4311]]
Source code in tinygrad/tensor.py
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 | |
log_softmax
¤
log_softmax(
axis=-1, dtype: DTypeLike | None = None
) -> Tensor
Applies the log-softmax function to the tensor along the specified axis.
The log-softmax function is a numerically stable alternative to the softmax function in log space.
You can pass in the axis keyword argument to control the axis along which the log-softmax is computed.
Tensor.manual_seed(42)
t = Tensor.randn(2, 3)
print(t.numpy())
[[ 0.9779 0.4678 0.5526]
[-0.3288 -0.8555 0.2753]]
print(t.log_softmax().numpy())
[[-0.8127 -1.3228 -1.238 ]
[-1.2297 -1.7564 -0.6256]]
print(t.log_softmax(axis=0).numpy())
[[-0.2396 -0.2361 -0.564 ]
[-1.5463 -1.5594 -0.8414]]
Source code in tinygrad/tensor.py
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 | |
logsumexp
¤
logsumexp(axis=None, keepdim=False) -> Tensor
Computes the log-sum-exp of the tensor along the specified axis or axes.
The log-sum-exp function is a numerically stable way to compute the logarithm of the sum of exponentials.
You can pass in axis and keepdim keyword arguments to control the axis along
which the log-sum-exp is computed and whether the reduced dimensions are retained.
Tensor.manual_seed(42)
t = Tensor.randn(2, 3)
print(t.numpy())
[[ 0.9779 0.4678 0.5526]
[-0.3288 -0.8555 0.2753]]
print(t.logsumexp().numpy())
2.1347282
print(t.logsumexp(axis=0).numpy())
[1.2174 0.7039 1.1167]
print(t.logsumexp(axis=1).numpy())
[1.7906 0.9009]
Source code in tinygrad/tensor.py
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 | |
logcumsumexp
¤
logcumsumexp(axis=0) -> Tensor
Computes the log-cumsum-exp of the tensor along the specified axis or axes.
The log-cumsum-exp function is a numerically stable way to compute the logarithm of the cumulative sum of exponentials.
You can pass in the axis keyword argument to control the axis along which
the log-cumsum-exp is computed.
Tensor.manual_seed(42)
t = Tensor.randn(2, 3)
print(t.numpy())
[[ 0.9779 0.4678 0.5526]
[-0.3288 -0.8555 0.2753]]
print(t.logcumsumexp().numpy())
[[0.9779 0.4678 0.5526]
[1.2174 0.7039 1.1167]]
print(t.logcumsumexp(axis=0).numpy())
[[0.9779 0.4678 0.5526]
[1.2174 0.7039 1.1167]]
print(t.logcumsumexp(axis=1).numpy())
[[ 0.9779 1.4481 1.7906]
[-0.3288 0.1353 0.9009]]
Source code in tinygrad/tensor.py
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 | |
argmax
¤
argmax(axis=None, keepdim=False) -> Tensor
Returns the indices of the maximum value of the tensor along the specified axis.
You can pass in axis and keepdim keyword arguments to control the axis along
which the maximum is computed and whether the reduced dimensions are retained.
t = Tensor([[1, 0, 2], [5, 4, 3]])
print(t.numpy())
[[1 0 2]
[5 4 3]]
print(t.argmax().numpy()) # Returns the index of the maximum value in the flattened tensor.
3
print(t.argmax(axis=0).numpy()) # Returns the indices of the maximum values along axis 0.
[1 1 1]
print(t.argmax(axis=1).numpy()) # Returns the indices of the maximum values along axis 1.
[2 0]
Source code in tinygrad/tensor.py
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 | |
argmin
¤
argmin(axis=None, keepdim=False) -> Tensor
Returns the indices of the minimum value of the tensor along the specified axis.
You can pass in axis and keepdim keyword arguments to control the axis along
which the minimum is computed and whether the reduced dimensions are retained.
t = Tensor([[1, 0, 2], [5, 4, 3]])
print(t.numpy())
[[1 0 2]
[5 4 3]]
print(t.argmin().numpy()) # Returns the index of the minimum value in the flattened tensor.
1
print(t.argmin(axis=0).numpy()) # Returns the indices of the minimum values along axis 0.
[0 0 0]
print(t.argmin(axis=1).numpy()) # Returns the indices of the minimum values along axis 1.
[1 2]
Source code in tinygrad/tensor.py
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 | |
Processing¤
avg_pool2d
¤
avg_pool2d(
kernel_size: tuple[int, ...] = (2, 2),
stride=None,
dilation=1,
padding: int | tuple[int, ...] = 0,
ceil_mode=False,
count_include_pad=True,
) -> Tensor
Applies average pooling over a tensor.
This function supports three different types of padding
-
int(single value): Applies the same padding value uniformly to all spatial dimensions. -
tuple[int, ...](length = number of spatial dimensions): Specifies a distinct padding value for each spatial dimension in the form(padding_height, padding_width, ...). -
tuple[int, ...](length = 2 * number of spatial dimensions): Specifies explicit padding for each side of each spatial dimension in the form(padding_left, padding_right, padding_top, padding_bottom, ...).
When ceil_mode is set to True, output shape will be determined using ceil division.
When count_include_pad is set to False, zero padding will not be included in the averaging calculation.
Note
unlike PyTorch, this implementation is not limited to only 2d pooling and instead works for any number of dimensions.
t = Tensor.arange(25).reshape(1, 1, 5, 5)
print(t.avg_pool2d().numpy())
[[[[ 3. 5.]
[13. 15.]]]]
print(t.avg_pool2d(ceil_mode=True).numpy())
[[[[ 3. 5. 6.5]
[13. 15. 16.5]
[20.5 22.5 24. ]]]]
print(t.avg_pool2d(padding=1).numpy())
[[[[ 0. 0.75 1.75]
[ 3.75 9. 11. ]
[ 8.75 19. 21. ]]]]
print(t.avg_pool2d(padding=1, count_include_pad=False).numpy())
[[[[ 0. 1.5 3.5]
[ 7.5 9. 11. ]
[17.5 19. 21. ]]]]
Source code in tinygrad/tensor.py
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 | |
max_pool2d
¤
max_pool2d(
kernel_size: tuple[int, ...] = (2, 2),
stride=None,
dilation=1,
padding: int | tuple[int, ...] = 0,
ceil_mode=False,
return_indices=False,
) -> Tensor | tuple[Tensor, Tensor]
Applies max pooling over a tensor.
This function supports three different types of padding
-
int(single value): Applies the same padding value uniformly to all spatial dimensions. -
tuple[int, ...](length = number of spatial dimensions): Specifies a distinct padding value for each spatial dimension in the form(padding_height, padding_width, ...). -
tuple[int, ...](length = 2 * number of spatial dimensions): Specifies explicit padding for each side of each spatial dimension in the form(padding_left, padding_right, padding_top, padding_bottom, ...).
When ceil_mode is set to True, output shape will be determined using ceil division.
When return_indices is set to True, the argmax will be returned along with the max values.
Note
unlike PyTorch, this implementation is not limited to only 2d pooling and instead works for any number of dimensions.
t = Tensor.arange(25).reshape(1, 1, 5, 5)
print(t.max_pool2d().numpy())
[[[[ 6 8]
[16 18]]]]
print(t.max_pool2d(ceil_mode=True).numpy())
[[[[ 6 8 9]
[16 18 19]
[21 23 24]]]]
print(t.max_pool2d(padding=1).numpy())
[[[[ 0 2 4]
[10 12 14]
[20 22 24]]]]
Source code in tinygrad/tensor.py
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 | |
max_unpool2d
¤
max_unpool2d(
indices: Tensor,
kernel_size: tuple[int, ...] = (2, 2),
stride=None,
dilation=1,
padding: int | tuple[int, ...] = 0,
output_size=None,
)
Performs a partial inverse of max_pool2d using the indices from the argmax.
When output_size is provided, the output shape disambiguates to the provided shape.
Note
unlike PyTorch, this implementation is not limited to only 2d pooling and instead works for any number of dimensions.
t = Tensor.arange(1, 17).reshape(1, 1, 4, 4)
print(t.numpy())
[[[[ 1 2 3 4]
[ 5 6 7 8]
[ 9 10 11 12]
[13 14 15 16]]]]
output, indices = Tensor.max_pool2d(t, return_indices=True)
print(output.numpy())
print(indices.numpy())
[[[[ 6 8]
[14 16]]]]
[[[[ 5 7]
[13 15]]]]
print(Tensor.max_unpool2d(output, indices).numpy())
[[[[ 0 0 0 0]
[ 0 6 0 8]
[ 0 0 0 0]
[ 0 14 0 16]]]]
Source code in tinygrad/tensor.py
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 | |
conv2d
¤
conv2d(
weight: Tensor,
bias: Tensor | None = None,
groups=1,
stride=1,
dilation=1,
padding: int | tuple[int, ...] = 0,
dtype: DTypeLike | None = None,
) -> Tensor
Applies a convolution over a tensor with a given weight and optional bias.
This function supports three different types of padding
-
int(single value): Applies the same padding value uniformly to all spatial dimensions. -
tuple[int, ...](length = number of spatial dimensions): Specifies a distinct padding value for each spatial dimension in the form(padding_height, padding_width, ...). -
tuple[int, ...](length = 2 * number of spatial dimensions): Specifies explicit padding for each side of each spatial dimension in the form(padding_left, padding_right, padding_top, padding_bottom, ...).
Note
unlike PyTorch, this implementation is not limited to only 2d convolutions and instead works for any number of dimensions.
See: https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
t = Tensor.arange(9).reshape(1, 1, 3, 3)
w = Tensor.ones(1, 1, 2, 2)
print(t.conv2d(w).numpy())
[[[[ 8. 12.]
[20. 24.]]]]
Source code in tinygrad/tensor.py
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 | |
conv_transpose2d
¤
conv_transpose2d(
weight: Tensor,
bias: Tensor | None = None,
groups=1,
stride=1,
dilation=1,
padding=0,
output_padding=0,
) -> Tensor
Applies a transposed convolution over a tensor with a given weight and optional bias.
This function supports three different types of padding
-
int(single value): Applies the same padding value uniformly to all spatial dimensions. -
tuple[int, ...](length = number of spatial dimensions): Specifies a distinct padding value for each spatial dimension in the form(padding_height, padding_width, ...). -
tuple[int, ...](length = 2 * number of spatial dimensions): Specifies explicit padding for each side of each spatial dimension in the form(padding_left, padding_right, padding_top, padding_bottom, ...).
Note
unlike PyTorch, this implementation is not limited to only 2d transposed convolutions and instead works for any number of dimensions.
See: https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose2d.html
t = Tensor.arange(9).reshape(1, 1, 3, 3)
w = Tensor.ones(1, 1, 2, 2)
print(t.conv_transpose2d(w).numpy())
[[[[ 0. 1. 3. 2.]
[ 3. 8. 12. 7.]
[ 9. 20. 24. 13.]
[ 6. 13. 15. 8.]]]]
Source code in tinygrad/tensor.py
2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 | |
dot
¤
Performs dot product between two tensors.
If w is 1-D, it's a sum product over the last axis of self and w.
If w is N-D with N>=2, it's a sum product over the last axis of self and the second-to-last axis of w.
You can pass in the optional dtype keyword argument to control the data type of the accumulation.
a = Tensor([1, 2, 3])
b = Tensor([1, 1, 0])
print(a.dot(b).numpy())
3
a = Tensor([[1, 2], [3, 4]])
b = Tensor([[5, 6], [7, 8]])
print(a.dot(b).numpy())
[[19 22]
[43 50]]
Source code in tinygrad/tensor.py
2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 | |
matmul
¤
Performs matrix multiplication between two tensors.
You can pass in the reverse keyword argument to control the order of the matrix multiplication.
You can pass in the optional dtype keyword argument to control the data type of the accumulation.
a = Tensor([[1, 2], [3, 4]])
b = Tensor([[5, 6], [7, 8]])
print(a.matmul(b).numpy())
[[19 22]
[43 50]]
Source code in tinygrad/tensor.py
2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 | |
einsum
staticmethod
¤
einsum(
formula: str,
*operands: Tensor | Sequence[Tensor],
dtype: DTypeLike | None = None
) -> Tensor
Sums the product of the elements of the input tensors according to a formula based on the Einstein summation convention.
See: https://pytorch.org/docs/stable/generated/torch.einsum.html
x = Tensor([[1, 2], [3, 4]])
y = Tensor([[5, 6], [7, 8]])
print(Tensor.einsum("ij,ij->", x, y).numpy())
70
Source code in tinygrad/tensor.py
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 | |
cumsum
¤
Computes the cumulative sum of the tensor along the specified axis.
t = Tensor.ones(2, 3)
print(t.numpy())
[[1. 1. 1.]
[1. 1. 1.]]
print(t.cumsum(1).numpy())
[[1. 2. 3.]
[1. 2. 3.]]
Source code in tinygrad/tensor.py
2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 | |
cumprod
¤
Computes the cumulative product of the elements of the tensor along the specified axis.
t = Tensor.arange(1, 7).reshape(2, 3)
print(t.numpy())
[[1 2 3]
[4 5 6]]
print(t.cumprod(axis=0).numpy())
[[ 1 2 3]
[ 4 10 18]]
Source code in tinygrad/tensor.py
2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 | |
cummax
¤
Computes the cumulative max of the tensor along axis, returning (values, indices).
t = Tensor([0, 1, -1, 2, -2, 3, -3])
values, indices = t.cummax(0)
print(values.numpy())
print(indices.numpy())
[0 1 1 2 2 3 3]
[0 1 1 3 3 5 5]
Source code in tinygrad/tensor.py
2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 | |
cummin
¤
Computes the cumulative min of the tensor along axis, returning (values, indices).
t = Tensor([0, 1, -1, 2, -2, 3, -3])
values, indices = t.cummin(0)
print(values.numpy())
print(indices.numpy())
[ 0 0 -1 -1 -2 -2 -3]
[0 0 2 2 4 4 6]
Source code in tinygrad/tensor.py
2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 | |
triu
¤
Returns the upper triangular part of the tensor, the other elements are set to 0.
The argument diagonal determines which diagonal is on the boundary. diagonal = 0 means the main diagonal.
Positive diagonal means above the main diagonal, and negative diagonal means below the main diagonal.
t = Tensor([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
print(t.numpy())
[[ 1 2 3 4]
[ 5 6 7 8]
[ 9 10 11 12]]
print(t.triu(diagonal=0).numpy())
[[ 1 2 3 4]
[ 0 6 7 8]
[ 0 0 11 12]]
print(t.triu(diagonal=1).numpy())
[[ 0 2 3 4]
[ 0 0 7 8]
[ 0 0 0 12]]
print(t.triu(diagonal=-1).numpy())
[[ 1 2 3 4]
[ 5 6 7 8]
[ 0 10 11 12]]
Source code in tinygrad/tensor.py
2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 | |
tril
¤
Returns the lower triangular part of the tensor, the other elements are set to 0.
The argument diagonal determines which diagonal is on the boundary. diagonal = 0 means the main diagonal.
Positive diagonal means above the main diagonal, and negative diagonal means below the main diagonal.
t = Tensor([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
print(t.numpy())
[[ 1 2 3 4]
[ 5 6 7 8]
[ 9 10 11 12]]
print(t.tril(diagonal=0).numpy())
[[ 1 0 0 0]
[ 5 6 0 0]
[ 9 10 11 0]]
print(t.tril(diagonal=1).numpy())
[[ 1 2 0 0]
[ 5 6 7 0]
[ 9 10 11 12]]
print(t.tril(diagonal=-1).numpy())
[[ 0 0 0 0]
[ 5 0 0 0]
[ 9 10 0 0]]
Source code in tinygrad/tensor.py
2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 | |
interpolate
¤
Downsamples or Upsamples to the input size, accepts 0 to N batch dimensions.
The interpolation algorithm is selected with mode which currently only supports linear, nearest and nearest-exact.
To run bilinear or trilinear, pass in a 2D or 3D size.
t = Tensor([[1, 2, 3, 4], [21, 22, 23, 24], [41, 42, 43, 44]])
print(t.numpy())
[[ 1 2 3 4]
[21 22 23 24]
[41 42 43 44]]
print(t.interpolate(size=(2,3), mode="linear").numpy())
[[ 6 7 8]
[36 37 38]]
Source code in tinygrad/tensor.py
2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 | |
scatter
¤
scatter(
dim: int,
index: Tensor,
src: Tensor | PyConst,
reduce: Literal["multiply", "add"] | None = None,
) -> Tensor
Scatters src values along an axis specified by dim.
Apply add or multiply reduction operation with reduce.
Note
To use the reduce argument with a Tensor src, see Tensor.scatter_reduce.
src = Tensor.arange(1, 11).reshape(2, 5)
print(src.numpy())
[[ 1 2 3 4 5]
[ 6 7 8 9 10]]
index = Tensor([[0, 1, 2, 0]])
print(Tensor.zeros(3, 5, dtype=src.dtype).scatter(0, index, src).numpy())
[[1 0 0 4 0]
[0 2 0 0 0]
[0 0 3 0 0]]
index = Tensor([[0, 1, 2], [0, 1, 4]])
print(Tensor.zeros(3, 5, dtype=src.dtype).scatter(1, index, src).numpy())
[[1 2 3 0 0]
[6 7 0 0 8]
[0 0 0 0 0]]
print(Tensor.full((2, 4), 2.0).scatter(1, Tensor([[2], [3]]), 1.23, reduce='multiply').numpy())
[[2. 2. 2.46 2. ]
[2. 2. 2. 2.46]]
print(Tensor.full((2, 4), 2.0).scatter(1, Tensor([[2], [3]]), 1.23, reduce='add').numpy())
[[2. 2. 3.23 2. ]
[2. 2. 2. 3.23]]
Source code in tinygrad/tensor.py
2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 | |
scatter_reduce
¤
scatter_reduce(
dim: int,
index: Tensor,
src: Tensor,
reduce: Literal["sum", "prod", "mean", "amax", "amin"],
include_self: bool = True,
) -> Tensor
Scatters src values along an axis specified by dim.
Apply "sum", "prod", "mean", "amax", or "amin" reduction operations with reduce.
Set include_self=False to exclude values in the self Tensor from the reduction.
src = Tensor.arange(1, 11).cast(dtypes.float).reshape(2, 5)
print(src.numpy())
index = Tensor([[0, 0, 0, 0, 0], [0, 0, 0, 0, 0]])
print(index.numpy())
[[ 1. 2. 3. 4. 5.]
[ 6. 7. 8. 9. 10.]]
[[0 0 0 0 0]
[0 0 0 0 0]]
print(Tensor.ones(1, 5, dtype=src.dtype).scatter_reduce(0, index, src, reduce='sum').numpy())
[[ 8. 10. 12. 14. 16.]]
print(Tensor.ones(1, 5, dtype=src.dtype).scatter_reduce(0, index, src, reduce='prod').numpy())
[[ 6. 14. 24. 36. 50.]]
print(Tensor.ones(1, 5, dtype=src.dtype).scatter_reduce(0, index, src, reduce='mean', include_self=False).numpy())
[[3.5 4.5 5.5 6.5 7.5]]
print(Tensor([[-10, 20, 0, 5, 10]], dtype=src.dtype).scatter_reduce(0, index, src, reduce='amax').numpy())
[[ 6. 20. 8. 9. 10.]]
print(Tensor([[-10, 20, 0, 5, 10]], dtype=src.dtype).scatter_reduce(0, index, src, reduce='amin').numpy())
[[-10. 2. 0. 4. 5.]]
Source code in tinygrad/tensor.py
2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 | |
masked_select
¤
masked_select(mask)
Selects elements from self based on the boolean mask.
t = Tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
mask = Tensor([[True, False, True], [False, True, False], [False, False, True]])
print(t.numpy())
print(mask.numpy())
[[0 1 2]
[3 4 5]
[6 7 8]]
[[ True False True]
[False True False]
[False False True]]
print(t.masked_select(mask).numpy())
[0 2 4 8]
Source code in tinygrad/tensor.py
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 | |
masked_fill
¤
Replaces self with value wherever the elements of mask are True.
t = Tensor([1, 2, 3, 4, 5])
mask = Tensor([True, False, True, False, False])
print(t.masked_fill(mask, -12).numpy())
[-12 2 -12 4 5]
t = Tensor([1, 2, 3, 4, 5])
mask = Tensor([True, False, True, False, False])
value = Tensor([-1, -2, -3, -4, -5])
print(t.masked_fill(mask, value).numpy())
[-1 2 -3 4 5]
Source code in tinygrad/tensor.py
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 | |
nonzero
¤
nonzero() -> Tensor
Returns the indices of the elements that are non-zero.
Returns a 2D tensor where each row is the index of a non-zero element.
t = Tensor([1, 0, 2, 0, 3])
print(t.numpy())
[1 0 2 0 3]
print(t.nonzero().numpy())
[[0]
[2]
[4]]
t = Tensor([[1, 0], [0, 2]])
print(t.numpy())
[[1 0]
[0 2]]
print(t.nonzero().numpy())
[[0 0]
[1 1]]
Source code in tinygrad/tensor.py
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 | |
sort
¤
Performs a bitonic sort on the tensor along the specified dimension.
Order of indices for equivalent elements is always preserved.
See: https://en.wikipedia.org/wiki/Bitonic_sorter
t = Tensor([[0.1, 0.5, 1.2, 3.4, 2.1], [2.2, 1.9, 0.3, 4.5, 0.8]])
print(t.numpy())
[[0.1 0.5 1.2 3.4 2.1]
[2.2 1.9 0.3 4.5 0.8]]
sorted_values, indices = t.sort(dim=1, descending=True)
print(sorted_values.numpy())
print(indices.numpy())
[[3.4 2.1 1.2 0.5 0.1]
[4.5 2.2 1.9 0.8 0.3]]
[[3 4 2 1 0]
[3 0 1 4 2]]
Source code in tinygrad/tensor.py
2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 | |
argsort
¤
Returns the indices that sort input tensor along given dimension in given descending order by value.
t = Tensor([[2, 3, 4, 1], [1, 4, 3, 2]])
print(t.argsort().numpy())
[[3 0 1 2]
[0 3 2 1]]
Source code in tinygrad/tensor.py
2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 | |
topk
¤
Computes the top-k elements of the tensor along the specified dim.
Order of indices for equivalent elements is always preserved.
t = Tensor([[0.1, 0.5, 1.2, 3.4, 2.1], [2.2, 1.9, 0.3, 4.5, 0.8]])
print(t.numpy())
[[0.1 0.5 1.2 3.4 2.1]
[2.2 1.9 0.3 4.5 0.8]]
topk_values, topk_indices = t.topk(2, dim=1)
print(topk_values.numpy())
print(topk_indices.numpy())
[[3.4 2.1]
[4.5 2.2]]
[[3 4]
[3 0]]
Source code in tinygrad/tensor.py
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 | |
multinomial
¤
Returns a tensor with num_samples indices sampled from a multinomial distribution weighted by self.
Note
replacement=False for num_samples > 1 is not supported yet.
Tensor.manual_seed(42)
t = Tensor([1, 2, 3, 4])
print(t.multinomial(20, replacement=True).numpy())
[2 1 3 2 3 1 2 2 3 3 3 3 3 3 2 3 2 3 3 3]
Source code in tinygrad/tensor.py
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 | |
Neural Network (functional)¤
linear
¤
Applies a linear transformation to self using weight and bias.
See: https://pytorch.org/docs/stable/generated/torch.nn.Linear.html
t = Tensor([[1, 2], [3, 4]])
weight = Tensor([[1, 2], [3, 4]])
bias = Tensor([1, 2])
print(t.linear(weight, bias).numpy())
[[ 8 12]
[16 24]]
Source code in tinygrad/tensor.py
3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 | |
sequential
¤
Applies a sequence of functions to self chaining the output of each function to the input of the next.
t = Tensor([1, 2, 3])
print(t.sequential([lambda x: x * 2, lambda x: x + 1]).numpy())
[3 5 7]
Source code in tinygrad/tensor.py
3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 | |
layernorm
¤
Applies Layer Normalization over a mini-batch of inputs.
t = Tensor.randn(8, 10, 16) * 2 + 8
print(t.mean().item(), t.std().item())
7.9793524742126465 2.074720621109009
t = t.layernorm()
print(t.mean().item(), t.std().item())
7.269673196752535e-10 1.0003894567489624
Source code in tinygrad/tensor.py
3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 | |
batchnorm
¤
batchnorm(
weight: Tensor | None,
bias: Tensor | None,
mean: Tensor,
invstd: Tensor,
axis: int | tuple[int, ...] = 1,
) -> Tensor
Applies Batch Normalization over a mini-batch of inputs.
t = Tensor.randn(8, 4, 16, 16) * 2 + 8
print(t.mean().item(), t.std().item())
8.019729614257812 1.9927232265472412
t = t.batchnorm(None, None, t.mean(axis=(0,2,3)), t.var(axis=(0,2,3)).add(1e-5).rsqrt())
print(t.mean().item(), t.std().item())
6.119149134065083e-07 0.9998146891593933
Source code in tinygrad/tensor.py
3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 | |
dropout
¤
dropout(p=0.5) -> Tensor
Applies dropout to self.
Note
dropout is only applied when Tensor.training is True.
Tensor.manual_seed(42)
t = Tensor.randn(2, 2)
with Tensor.train():
print(t.dropout().numpy())
[[-1.0287 2.17 ]
[ 1.8178 0. ]]
Source code in tinygrad/tensor.py
3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 | |
one_hot
¤
Converts self to a one-hot tensor.
num_classes defaults to -1, which means num_classes will be inferred as max(self) + 1.
t = Tensor([0, 1, 3, 3, 4])
print(t.one_hot(5).numpy())
[[1 0 0 0 0]
[0 1 0 0 0]
[0 0 0 1 0]
[0 0 0 1 0]
[0 0 0 0 1]]
Source code in tinygrad/tensor.py
3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 | |
scaled_dot_product_attention
¤
scaled_dot_product_attention(
key: Tensor,
value: Tensor,
attn_mask: Tensor | None = None,
dropout_p: float = 0.0,
is_causal: bool = False,
enable_gqa: bool = False,
) -> Tensor
Computes scaled dot-product attention.
self is the query tensor, key is the key tensor, and value is the value tensor.
q = Tensor.randn(2, 4, 8)
k = Tensor.randn(2, 4, 8)
v = Tensor.randn(2, 4, 8)
print(q.scaled_dot_product_attention(k, v).numpy())
[[[ 0.6408 0.3264 0.7317 -1.0943 0.5778 -0.0534 -0.0104 -0.0488]
[ 0.1243 -0.8259 1.6481 -0.8035 -0.3961 0.4269 0.1232 1.6462]
[ 0.9535 0.1068 0.8545 -0.5395 0.4692 -0.0548 -0.2274 0.6152]
[ 0.8891 -0.0411 0.7818 -0.3322 0.3931 -0.0202 -0.1101 0.8129]]
[[-0.4273 -0.6085 -0.0465 0.5246 0.3641 -0.0381 -0.0106 0.8349]
[ 0.6321 0.3654 0.4137 -0.2327 0.2558 0.1418 -1.27 -0.802 ]
[ 0.1794 0.4616 0.1847 -0.1988 0.2123 0.1837 -0.9583 -0.5364]
[ 0.4408 0.6125 0.0811 -0.3886 0.3602 0.4987 -1.4414 -0.9565]]]
Source code in tinygrad/tensor.py
3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 | |
binary_crossentropy
¤
Computes the binary cross-entropy loss between self and Y.
See: https://pytorch.org/docs/stable/generated/torch.nn.BCELoss.html
t = Tensor([0.1, 0.9, 0.2])
Y = Tensor([0, 1, 0])
print(t.binary_crossentropy(Y).item())
0.14462155103683472
Source code in tinygrad/tensor.py
3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 | |
binary_crossentropy_logits
¤
binary_crossentropy_logits(
Y: Tensor,
reduction: ReductionStr = "mean",
pos_weight: Tensor | None = None,
) -> Tensor
Computes the binary cross-entropy loss between self and Y where self is logits.
See: https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html
t = Tensor([-1, 2, -3])
Y = Tensor([0, 1, 0])
print(t.binary_crossentropy_logits(Y).item())
0.16292566061019897
Source code in tinygrad/tensor.py
3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 | |
sparse_categorical_crossentropy
¤
sparse_categorical_crossentropy(
Y: Tensor,
ignore_index: int = -1,
label_smoothing=0.0,
reduction: ReductionStr = "mean",
) -> Tensor
Computes the sparse categorical cross-entropy loss between self and Y.
Note
self is logits and Y is the target labels.
NOTE: unlike PyTorch, this function expects the class axis to be -1
See: https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
t = Tensor([[-1, 2, -3], [1, -2, 3]])
Y = Tensor([1, 2])
print(t.sparse_categorical_crossentropy(Y).item())
0.09391524642705917
Source code in tinygrad/tensor.py
3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 | |
cross_entropy
¤
cross_entropy(
Y: Tensor,
reduction: ReductionStr = "mean",
label_smoothing: float = 0.0,
) -> Tensor
Computes the cross entropy loss between input logits and target.
Note
self are logits and Y are the target labels or class probabilities.
See: https://pytorch.org/docs/stable/generated/torch.nn.functional.cross_entropy.html
t = Tensor([[-1, 2, -3], [1, -2, 3]])
Y = Tensor([1, 2])
print(t.cross_entropy(Y).item())
0.09391524642705917
t = Tensor([[-1, 2, -3], [1, -2, 3]])
Y = Tensor([1, 2])
print(t.cross_entropy(Y, reduction='none').numpy())
[0.055 0.1328]
Source code in tinygrad/tensor.py
3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 | |
nll_loss
¤
nll_loss(
Y: Tensor,
weight: Tensor | None = None,
ignore_index: int | None = None,
reduction: ReductionStr = "mean",
) -> Tensor
Computes the negative log likelihood loss between log-probabilities and target labels.
Note
self is log-probabilities and Y is the Y labels or class probabilities.
See: https://pytorch.org/docs/stable/generated/torch.nn.functional.nll_loss.html
t = Tensor([[-1, 2, -3], [1, -2, 3]])
Y = Tensor([1, 2])
print(t.log_softmax().nll_loss(Y).item())
0.09391524642705917
t = Tensor([[-1, 2, -3], [1, -2, 3]])
Y = Tensor([1, 2])
print(t.log_softmax().nll_loss(Y, reduction='none').numpy())
[0.055 0.1328]
Source code in tinygrad/tensor.py
3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 | |
Linear Algebra¤
qr
¤
Source code in tinygrad/tensor.py
3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 | |
svd
¤
Source code in tinygrad/tensor.py
3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 | |