Complex Ops
Reduce¤
sum
¤
sum(
axis: int | Sequence[int] | None = None,
keepdim=False,
dtype: DTypeLike | None = None,
) -> Tensor
Returns the sum of the elements of the tensor along the specified axis or axes.
You can pass in axis and keepdim keyword arguments to control the axis along
which the maximum is computed and whether the reduced dimensions are retained.
You can pass in dtype keyword argument to control the data type of the accumulation.
If not specified, the accumulation data type is chosen based on the input tensor's data type.
t = Tensor.arange(6).reshape(2, 3)
print(t.numpy())
[[0 1 2]
[3 4 5]]
print(t.sum().numpy())
15
print(t.sum(axis=0).numpy())
[3 5 7]
print(t.sum(axis=1).numpy())
[ 3 12]
Source code in tinygrad/tensor.py
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 | |
prod
¤
prod(
axis: int | Sequence[int] | None = None,
keepdim=False,
dtype: DTypeLike | None = None,
) -> Tensor
Returns the product of the elements of the tensor along the specified axis or axes.
You can pass in axis and keepdim keyword arguments to control the axis along
which the maximum is computed and whether the reduced dimensions are retained.
You can pass in dtype keyword argument to control the data type of the accumulation.
If not specified, the accumulation data type is chosen based on the input tensor's data type.
t = Tensor([-1, -2, -3, 1, 2, 3]).reshape(2, 3)
print(t.numpy())
[[-1 -2 -3]
[ 1 2 3]]
print(t.prod().numpy())
-36
print(t.prod(axis=0).numpy())
[-1 -4 -9]
print(t.prod(axis=1).numpy())
[-6 6]
Source code in tinygrad/tensor.py
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 | |
max
¤
Returns the maximum value of the tensor along the specified axis or axes.
You can pass in axis and keepdim keyword arguments to control the axis along
which the maximum is computed and whether the reduced dimensions are retained.
t = Tensor([[1, 0, 2], [5, 4, 3]])
print(t.numpy())
[[1 0 2]
[5 4 3]]
print(t.max().numpy())
5
print(t.max(axis=0).numpy())
[5 4 3]
print(t.max(axis=1, keepdim=True).numpy())
[[2]
[5]]
Source code in tinygrad/tensor.py
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 | |
min
¤
Returns the minimum value of the tensor along the specified axis or axes.
You can pass in axis and keepdim keyword arguments to control the axis along
which the minimum is computed and whether the reduced dimensions are retained.
t = Tensor([[1, 0, 2], [5, 4, 3]])
print(t.numpy())
[[1 0 2]
[5 4 3]]
print(t.min().numpy())
0
print(t.min(axis=0).numpy())
[1 0 2]
print(t.min(axis=1, keepdim=True).numpy())
[[0]
[3]]
Source code in tinygrad/tensor.py
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 | |
any
¤
Tests if any element evaluates to True along the specified axis or axes.
You can pass in axis and keepdim keyword arguments to control the reduce axis and whether the reduced dimensions are retained.
t = Tensor([[True, True], [True, False], [False, False]])
print(t.numpy())
[[ True True]
[ True False]
[False False]]
print(t.any().numpy())
True
print(t.any(axis=0).numpy())
[ True True]
print(t.any(axis=1, keepdim=True).numpy())
[[ True]
[ True]
[False]]
Source code in tinygrad/tensor.py
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 | |
all
¤
Tests if all element evaluates to True along the specified axis or axes.
You can pass in axis and keepdim keyword arguments to control the reduce axis and whether the reduced dimensions are retained.
t = Tensor([[True, True], [True, False], [False, False]])
print(t.numpy())
[[ True True]
[ True False]
[False False]]
print(t.all().numpy())
False
print(t.all(axis=0).numpy())
[False False]
print(t.all(axis=1, keepdim=True).numpy())
[[ True]
[False]
[False]]
Source code in tinygrad/tensor.py
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 | |
isclose
¤
Returns a new tensor with element-wise comparison of closeness to other within a tolerance.
The rtol and atol keyword arguments control the relative and absolute tolerance of the comparison.
By default, two NaN values are not close to each other. If equal_nan is True, two NaN values are considered close.
print(Tensor([1e-7, 1e-8, 1e-9, float('nan')]).isclose(Tensor([0.0, 0.0, 0.0, float('nan')])).numpy())
[False True True False]
print(Tensor([float('nan')]).isclose(Tensor([float('nan')]), equal_nan=True).numpy())
[ True]
Source code in tinygrad/tensor.py
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 | |
mean
¤
Returns the mean value of the tensor along the specified axis or axes.
You can pass in axis and keepdim keyword arguments to control the axis along
which the mean is computed and whether the reduced dimensions are retained.
Tensor.manual_seed(42)
t = Tensor.normal(2, 3, mean=2.5, std=0.5)
print(t.numpy())
[[2.9889 2.7339 2.7763]
[2.3356 2.0722 2.6376]]
print(t.mean().numpy())
2.5907671
print(t.mean(axis=0).numpy())
[2.6623 2.4031 2.707 ]
print(t.mean(axis=1).numpy())
[2.833 2.3485]
Source code in tinygrad/tensor.py
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 | |
var
¤
Returns the variance of the tensor along the specified axis or axes.
You can pass in axis, keepdim, and correction keyword arguments to control the axis along
which the variance is computed, whether the reduced dimensions are retained, and the Bessel's correction applied.
Tensor.manual_seed(42)
t = Tensor.normal(2, 3, mean=2.5, std=0.5)
print(t.numpy())
[[2.9889 2.7339 2.7763]
[2.3356 2.0722 2.6376]]
print(t.var().numpy())
0.10992539
print(t.var(axis=0).numpy())
[0.2134 0.2189 0.0096]
print(t.var(axis=1).numpy())
[0.0187 0.08 ]
Source code in tinygrad/tensor.py
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 | |
var_mean
¤
var_mean(
axis: int | Sequence[int] | None = None,
keepdim=False,
correction=1,
) -> tuple[Tensor, Tensor]
Calculates the variance and mean over the dimensions specified by dim.
Syntactic sugar around Tensor.var and Tensor.mean to match torch.var_mean.
Tensor.manual_seed(42)
t = Tensor.normal(2, 3, mean=2.5, std=0.5)
print(t.numpy())
[[2.9889 2.7339 2.7763]
[2.3356 2.0722 2.6376]]
var, mean = t.var_mean()
print(var.numpy(), mean.numpy())
0.10992539 2.5907671
Source code in tinygrad/tensor.py
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 | |
std
¤
Returns the standard deviation of the tensor along the specified axis or axes.
You can pass in axis, keepdim, and correction keyword arguments to control the axis along
which the standard deviation is computed, whether the reduced dimensions are retained, and the Bessel's correction applied.
Tensor.manual_seed(42)
t = Tensor.normal(2, 3, mean=2.5, std=0.5)
print(t.numpy())
[[2.9889 2.7339 2.7763]
[2.3356 2.0722 2.6376]]
print(t.std().numpy())
0.33154997
print(t.std(axis=0).numpy())
[0.462 0.4679 0.0981]
print(t.std(axis=1).numpy())
[0.1367 0.2829]
Source code in tinygrad/tensor.py
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 | |
std_mean
¤
std_mean(
axis: int | Sequence[int] | None = None,
keepdim=False,
correction=1,
) -> tuple[Tensor, Tensor]
Calculates the standard deviation and mean over the dimensions specified by dim.
Syntactic sugar around Tensor.std and Tensor.mean to match torch.std_mean.
Tensor.manual_seed(42)
t = Tensor.normal(2, 3, mean=2.5, std=0.5)
print(t.numpy())
[[2.9889 2.7339 2.7763]
[2.3356 2.0722 2.6376]]
std, mean = t.std_mean()
print(std.numpy(), mean.numpy())
0.33154997 2.5907671
Source code in tinygrad/tensor.py
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 | |
softmax
¤
softmax(axis=-1, dtype: DTypeLike | None = None) -> Tensor
Applies the softmax function to the tensor along the specified axis.
Rescales the elements of the tensor such that they lie in the range [0, 1] and sum to 1.
You can pass in the axis keyword argument to control the axis along which the softmax is computed.
Tensor.manual_seed(42)
t = Tensor.randn(2, 3)
print(t.numpy())
[[ 0.9779 0.4678 0.5526]
[-0.3288 -0.8555 0.2753]]
print(t.softmax().numpy())
[[0.4436 0.2664 0.29 ]
[0.2924 0.1727 0.5349]]
print(t.softmax(axis=0).numpy())
[[0.787 0.7897 0.5689]
[0.213 0.2103 0.4311]]
Source code in tinygrad/tensor.py
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 | |
log_softmax
¤
log_softmax(
axis=-1, dtype: DTypeLike | None = None
) -> Tensor
Applies the log-softmax function to the tensor along the specified axis.
The log-softmax function is a numerically stable alternative to the softmax function in log space.
You can pass in the axis keyword argument to control the axis along which the log-softmax is computed.
Tensor.manual_seed(42)
t = Tensor.randn(2, 3)
print(t.numpy())
[[ 0.9779 0.4678 0.5526]
[-0.3288 -0.8555 0.2753]]
print(t.log_softmax().numpy())
[[-0.8127 -1.3228 -1.238 ]
[-1.2297 -1.7564 -0.6256]]
print(t.log_softmax(axis=0).numpy())
[[-0.2396 -0.2361 -0.564 ]
[-1.5463 -1.5594 -0.8414]]
Source code in tinygrad/tensor.py
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 | |
logsumexp
¤
logsumexp(axis=None, keepdim=False) -> Tensor
Computes the log-sum-exp of the tensor along the specified axis or axes.
The log-sum-exp function is a numerically stable way to compute the logarithm of the sum of exponentials.
You can pass in axis and keepdim keyword arguments to control the axis along
which the log-sum-exp is computed and whether the reduced dimensions are retained.
Tensor.manual_seed(42)
t = Tensor.randn(2, 3)
print(t.numpy())
[[ 0.9779 0.4678 0.5526]
[-0.3288 -0.8555 0.2753]]
print(t.logsumexp().numpy())
2.1347282
print(t.logsumexp(axis=0).numpy())
[1.2174 0.7039 1.1167]
print(t.logsumexp(axis=1).numpy())
[1.7906 0.9009]
Source code in tinygrad/tensor.py
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 | |
logcumsumexp
¤
logcumsumexp(axis=0) -> Tensor
Computes the log-cumsum-exp of the tensor along the specified axis or axes.
The log-cumsum-exp function is a numerically stable way to compute the logarithm of the cumulative sum of exponentials.
You can pass in the axis keyword argument to control the axis along which
the log-cumsum-exp is computed.
Tensor.manual_seed(42)
t = Tensor.randn(2, 3)
print(t.numpy())
[[ 0.9779 0.4678 0.5526]
[-0.3288 -0.8555 0.2753]]
print(t.logcumsumexp().numpy())
[[0.9779 0.4678 0.5526]
[1.2174 0.7039 1.1167]]
print(t.logcumsumexp(axis=0).numpy())
[[0.9779 0.4678 0.5526]
[1.2174 0.7039 1.1167]]
print(t.logcumsumexp(axis=1).numpy())
[[ 0.9779 1.4481 1.7906]
[-0.3288 0.1353 0.9009]]
Source code in tinygrad/tensor.py
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 | |
argmax
¤
argmax(axis=None, keepdim=False) -> Tensor
Returns the indices of the maximum value of the tensor along the specified axis.
You can pass in axis and keepdim keyword arguments to control the axis along
which the maximum is computed and whether the reduced dimensions are retained.
t = Tensor([[1, 0, 2], [5, 4, 3]])
print(t.numpy())
[[1 0 2]
[5 4 3]]
print(t.argmax().numpy()) # Returns the index of the maximum value in the flattened tensor.
3
print(t.argmax(axis=0).numpy()) # Returns the indices of the maximum values along axis 0.
[1 1 1]
print(t.argmax(axis=1).numpy()) # Returns the indices of the maximum values along axis 1.
[2 0]
Source code in tinygrad/tensor.py
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 | |
argmin
¤
argmin(axis=None, keepdim=False) -> Tensor
Returns the indices of the minimum value of the tensor along the specified axis.
You can pass in axis and keepdim keyword arguments to control the axis along
which the minimum is computed and whether the reduced dimensions are retained.
t = Tensor([[1, 0, 2], [5, 4, 3]])
print(t.numpy())
[[1 0 2]
[5 4 3]]
print(t.argmin().numpy()) # Returns the index of the minimum value in the flattened tensor.
1
print(t.argmin(axis=0).numpy()) # Returns the indices of the minimum values along axis 0.
[0 0 0]
print(t.argmin(axis=1).numpy()) # Returns the indices of the minimum values along axis 1.
[1 2]
Source code in tinygrad/tensor.py
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 | |
Processing¤
avg_pool2d
¤
avg_pool2d(
kernel_size: tuple[int, ...] = (2, 2),
stride=None,
dilation=1,
padding: int | tuple[int, ...] = 0,
ceil_mode=False,
count_include_pad=True,
) -> Tensor
Applies average pooling over a tensor.
This function supports three different types of padding
-
int(single value): Applies the same padding value uniformly to all spatial dimensions. -
tuple[int, ...](length = number of spatial dimensions): Specifies a distinct padding value for each spatial dimension in the form(padding_height, padding_width, ...). -
tuple[int, ...](length = 2 * number of spatial dimensions): Specifies explicit padding for each side of each spatial dimension in the form(padding_left, padding_right, padding_top, padding_bottom, ...).
When ceil_mode is set to True, output shape will be determined using ceil division.
When count_include_pad is set to False, zero padding will not be included in the averaging calculation.
Note
unlike PyTorch, this implementation is not limited to only 2d pooling and instead works for any number of dimensions.
t = Tensor.arange(25).reshape(1, 1, 5, 5)
print(t.avg_pool2d().numpy())
[[[[ 3. 5.]
[13. 15.]]]]
print(t.avg_pool2d(ceil_mode=True).numpy())
[[[[ 3. 5. 6.5]
[13. 15. 16.5]
[20.5 22.5 24. ]]]]
print(t.avg_pool2d(padding=1).numpy())
[[[[ 0. 0.75 1.75]
[ 3.75 9. 11. ]
[ 8.75 19. 21. ]]]]
print(t.avg_pool2d(padding=1, count_include_pad=False).numpy())
[[[[ 0. 1.5 3.5]
[ 7.5 9. 11. ]
[17.5 19. 21. ]]]]
Source code in tinygrad/tensor.py
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 | |
max_pool2d
¤
max_pool2d(
kernel_size: tuple[int, ...] = (2, 2),
stride=None,
dilation=1,
padding: int | tuple[int, ...] = 0,
ceil_mode=False,
return_indices=False,
) -> Tensor | tuple[Tensor, Tensor]
Applies max pooling over a tensor.
This function supports three different types of padding
-
int(single value): Applies the same padding value uniformly to all spatial dimensions. -
tuple[int, ...](length = number of spatial dimensions): Specifies a distinct padding value for each spatial dimension in the form(padding_height, padding_width, ...). -
tuple[int, ...](length = 2 * number of spatial dimensions): Specifies explicit padding for each side of each spatial dimension in the form(padding_left, padding_right, padding_top, padding_bottom, ...).
When ceil_mode is set to True, output shape will be determined using ceil division.
When return_indices is set to True, the argmax will be returned along with the max values.
Note
unlike PyTorch, this implementation is not limited to only 2d pooling and instead works for any number of dimensions.
t = Tensor.arange(25).reshape(1, 1, 5, 5)
print(t.max_pool2d().numpy())
[[[[ 6 8]
[16 18]]]]
print(t.max_pool2d(ceil_mode=True).numpy())
[[[[ 6 8 9]
[16 18 19]
[21 23 24]]]]
print(t.max_pool2d(padding=1).numpy())
[[[[ 0 2 4]
[10 12 14]
[20 22 24]]]]
Source code in tinygrad/tensor.py
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 | |
max_unpool2d
¤
max_unpool2d(
indices: Tensor,
kernel_size: tuple[int, ...] = (2, 2),
stride=None,
dilation=1,
padding: int | tuple[int, ...] = 0,
output_size=None,
)
Performs a partial inverse of max_pool2d using the indices from the argmax.
When output_size is provided, the output shape disambiguates to the provided shape.
Note
unlike PyTorch, this implementation is not limited to only 2d pooling and instead works for any number of dimensions.
t = Tensor.arange(1, 17).reshape(1, 1, 4, 4)
print(t.numpy())
[[[[ 1 2 3 4]
[ 5 6 7 8]
[ 9 10 11 12]
[13 14 15 16]]]]
output, indices = Tensor.max_pool2d(t, return_indices=True)
print(output.numpy())
print(indices.numpy())
[[[[ 6 8]
[14 16]]]]
[[[[ 5 7]
[13 15]]]]
print(Tensor.max_unpool2d(output, indices).numpy())
[[[[ 0 0 0 0]
[ 0 6 0 8]
[ 0 0 0 0]
[ 0 14 0 16]]]]
Source code in tinygrad/tensor.py
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 | |
conv2d
¤
conv2d(
weight: Tensor,
bias: Tensor | None = None,
groups=1,
stride=1,
dilation=1,
padding: int | tuple[int, ...] = 0,
dtype: DTypeLike | None = None,
) -> Tensor
Applies a convolution over a tensor with a given weight and optional bias.
This function supports three different types of padding
-
int(single value): Applies the same padding value uniformly to all spatial dimensions. -
tuple[int, ...](length = number of spatial dimensions): Specifies a distinct padding value for each spatial dimension in the form(padding_height, padding_width, ...). -
tuple[int, ...](length = 2 * number of spatial dimensions): Specifies explicit padding for each side of each spatial dimension in the form(padding_left, padding_right, padding_top, padding_bottom, ...).
Note
unlike PyTorch, this implementation is not limited to only 2d convolutions and instead works for any number of dimensions.
See: https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
t = Tensor.arange(9).reshape(1, 1, 3, 3)
w = Tensor.ones(1, 1, 2, 2)
print(t.conv2d(w).numpy())
[[[[ 8. 12.]
[20. 24.]]]]
Source code in tinygrad/tensor.py
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 | |
conv_transpose2d
¤
conv_transpose2d(
weight: Tensor,
bias: Tensor | None = None,
groups=1,
stride=1,
dilation=1,
padding=0,
output_padding=0,
) -> Tensor
Applies a transposed convolution over a tensor with a given weight and optional bias.
This function supports three different types of padding
-
int(single value): Applies the same padding value uniformly to all spatial dimensions. -
tuple[int, ...](length = number of spatial dimensions): Specifies a distinct padding value for each spatial dimension in the form(padding_height, padding_width, ...). -
tuple[int, ...](length = 2 * number of spatial dimensions): Specifies explicit padding for each side of each spatial dimension in the form(padding_left, padding_right, padding_top, padding_bottom, ...).
Note
unlike PyTorch, this implementation is not limited to only 2d transposed convolutions and instead works for any number of dimensions.
See: https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose2d.html
t = Tensor.arange(9).reshape(1, 1, 3, 3)
w = Tensor.ones(1, 1, 2, 2)
print(t.conv_transpose2d(w).numpy())
[[[[ 0. 1. 3. 2.]
[ 3. 8. 12. 7.]
[ 9. 20. 24. 13.]
[ 6. 13. 15. 8.]]]]
Source code in tinygrad/tensor.py
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 | |
dot
¤
Performs dot product between two tensors.
If w is 1-D, it's a sum product over the last axis of self and w.
If w is N-D with N>=2, it's a sum product over the last axis of self and the second-to-last axis of w.
You can pass in the optional dtype keyword argument to control the data type of the accumulation.
a = Tensor([1, 2, 3])
b = Tensor([1, 1, 0])
print(a.dot(b).numpy())
3
a = Tensor([[1, 2], [3, 4]])
b = Tensor([[5, 6], [7, 8]])
print(a.dot(b).numpy())
[[19 22]
[43 50]]
Source code in tinygrad/tensor.py
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 | |
matmul
¤
Performs matrix multiplication between two tensors.
You can pass in the reverse keyword argument to control the order of the matrix multiplication.
You can pass in the optional dtype keyword argument to control the data type of the accumulation.
a = Tensor([[1, 2], [3, 4]])
b = Tensor([[5, 6], [7, 8]])
print(a.matmul(b).numpy())
[[19 22]
[43 50]]
Source code in tinygrad/tensor.py
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 | |
einsum
staticmethod
¤
einsum(
formula: str,
*operands: Tensor | Sequence[Tensor],
dtype: DTypeLike | None = None
) -> Tensor
Sums the product of the elements of the input tensors according to a formula based on the Einstein summation convention.
See: https://pytorch.org/docs/stable/generated/torch.einsum.html
x = Tensor([[1, 2], [3, 4]])
y = Tensor([[5, 6], [7, 8]])
print(Tensor.einsum("ij,ij->", x, y).numpy())
70
Source code in tinygrad/tensor.py
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 | |
cumsum
¤
Computes the cumulative sum of the tensor along the specified axis.
t = Tensor.ones(2, 3)
print(t.numpy())
[[1. 1. 1.]
[1. 1. 1.]]
print(t.cumsum(1).numpy())
[[1. 2. 3.]
[1. 2. 3.]]
Source code in tinygrad/tensor.py
2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 | |
cummax
¤
Computes the cumulative max of the tensor along the specified axis.
t = Tensor([0, 1, -1, 2, -2, 3, -3])
print(t.numpy())
[ 0 1 -1 2 -2 3 -3]
print(t.cummax(0).numpy())
[0 1 1 2 2 3 3]
Source code in tinygrad/tensor.py
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 | |
triu
¤
Returns the upper triangular part of the tensor, the other elements are set to 0.
The argument diagonal determines which diagonal is on the boundary. diagonal = 0 means the main diagonal.
Positive diagonal means above the main diagonal, and negative diagonal means below the main diagonal.
t = Tensor([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
print(t.numpy())
[[ 1 2 3 4]
[ 5 6 7 8]
[ 9 10 11 12]]
print(t.triu(diagonal=0).numpy())
[[ 1 2 3 4]
[ 0 6 7 8]
[ 0 0 11 12]]
print(t.triu(diagonal=1).numpy())
[[ 0 2 3 4]
[ 0 0 7 8]
[ 0 0 0 12]]
print(t.triu(diagonal=-1).numpy())
[[ 1 2 3 4]
[ 5 6 7 8]
[ 0 10 11 12]]
Source code in tinygrad/tensor.py
2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 | |
tril
¤
Returns the lower triangular part of the tensor, the other elements are set to 0.
The argument diagonal determines which diagonal is on the boundary. diagonal = 0 means the main diagonal.
Positive diagonal means above the main diagonal, and negative diagonal means below the main diagonal.
t = Tensor([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
print(t.numpy())
[[ 1 2 3 4]
[ 5 6 7 8]
[ 9 10 11 12]]
print(t.tril(diagonal=0).numpy())
[[ 1 0 0 0]
[ 5 6 0 0]
[ 9 10 11 0]]
print(t.tril(diagonal=1).numpy())
[[ 1 2 0 0]
[ 5 6 7 0]
[ 9 10 11 12]]
print(t.tril(diagonal=-1).numpy())
[[ 0 0 0 0]
[ 5 0 0 0]
[ 9 10 0 0]]
Source code in tinygrad/tensor.py
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 | |
interpolate
¤
Downsamples or Upsamples to the input size, accepts 0 to N batch dimensions.
The interpolation algorithm is selected with mode which currently only supports linear, nearest and nearest-exact.
To run bilinear or trilinear, pass in a 2D or 3D size.
t = Tensor([[1, 2, 3, 4], [21, 22, 23, 24], [41, 42, 43, 44]])
print(t.numpy())
[[ 1 2 3 4]
[21 22 23 24]
[41 42 43 44]]
print(t.interpolate(size=(2,3), mode="linear").numpy())
[[ 6 7 8]
[36 37 38]]
Source code in tinygrad/tensor.py
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 | |
scatter
¤
scatter(
dim: int,
index: Tensor,
src: Tensor | ConstType,
reduce: Literal["multiply", "add"] | None = None,
) -> Tensor
Scatters src values along an axis specified by dim.
Apply add or multiply reduction operation with reduce.
Note
To use the reduce argument with a Tensor src, see Tensor.scatter_reduce.
src = Tensor.arange(1, 11).reshape(2, 5)
print(src.numpy())
[[ 1 2 3 4 5]
[ 6 7 8 9 10]]
index = Tensor([[0, 1, 2, 0]])
print(Tensor.zeros(3, 5, dtype=src.dtype).scatter(0, index, src).numpy())
[[1 0 0 4 0]
[0 2 0 0 0]
[0 0 3 0 0]]
index = Tensor([[0, 1, 2], [0, 1, 4]])
print(Tensor.zeros(3, 5, dtype=src.dtype).scatter(1, index, src).numpy())
[[1 2 3 0 0]
[6 7 0 0 8]
[0 0 0 0 0]]
print(Tensor.full((2, 4), 2.0).scatter(1, Tensor([[2], [3]]), 1.23, reduce='multiply').numpy())
[[2. 2. 2.46 2. ]
[2. 2. 2. 2.46]]
print(Tensor.full((2, 4), 2.0).scatter(1, Tensor([[2], [3]]), 1.23, reduce='add').numpy())
[[2. 2. 3.23 2. ]
[2. 2. 2. 3.23]]
Source code in tinygrad/tensor.py
2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 | |
scatter_reduce
¤
scatter_reduce(
dim: int,
index: Tensor,
src: Tensor,
reduce: Literal["sum", "prod", "mean", "amax", "amin"],
include_self: bool = True,
) -> Tensor
Scatters src values along an axis specified by dim.
Apply "sum", "prod", "mean", "amax", or "amin" reduction operations with reduce.
Set include_self=False to exclude values in the self Tensor from the reduction.
src = Tensor.arange(1, 11).cast(dtypes.float).reshape(2, 5)
print(src.numpy())
index = Tensor([[0, 0, 0, 0, 0], [0, 0, 0, 0, 0]])
print(index.numpy())
[[ 1. 2. 3. 4. 5.]
[ 6. 7. 8. 9. 10.]]
[[0 0 0 0 0]
[0 0 0 0 0]]
print(Tensor.ones(1, 5, dtype=src.dtype).scatter_reduce(0, index, src, reduce='sum').numpy())
[[ 8. 10. 12. 14. 16.]]
print(Tensor.ones(1, 5, dtype=src.dtype).scatter_reduce(0, index, src, reduce='prod').numpy())
[[ 6. 14. 24. 36. 50.]]
print(Tensor.ones(1, 5, dtype=src.dtype).scatter_reduce(0, index, src, reduce='mean', include_self=False).numpy())
[[3.5 4.5 5.5 6.5 7.5]]
print(Tensor([[-10, 20, 0, 5, 10]], dtype=src.dtype).scatter_reduce(0, index, src, reduce='amax').numpy())
[[ 6. 20. 8. 9. 10.]]
print(Tensor([[-10, 20, 0, 5, 10]], dtype=src.dtype).scatter_reduce(0, index, src, reduce='amin').numpy())
[[-10. 2. 0. 4. 5.]]
Source code in tinygrad/tensor.py
2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 | |
masked_select
¤
masked_select(mask)
Selects elements from self based on the boolean mask.
t = Tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
mask = Tensor([[True, False, True], [False, True, False], [False, False, True]])
print(t.numpy())
print(mask.numpy())
[[0 1 2]
[3 4 5]
[6 7 8]]
[[ True False True]
[False True False]
[False False True]]
print(t.masked_select(mask).numpy())
[0 2 4 8]
Source code in tinygrad/tensor.py
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 | |
masked_fill
¤
Replaces self with value wherever the elements of mask are True.
t = Tensor([1, 2, 3, 4, 5])
mask = Tensor([True, False, True, False, False])
print(t.masked_fill(mask, -12).numpy())
[-12 2 -12 4 5]
t = Tensor([1, 2, 3, 4, 5])
mask = Tensor([True, False, True, False, False])
value = Tensor([-1, -2, -3, -4, -5])
print(t.masked_fill(mask, value).numpy())
[-1 2 -3 4 5]
Source code in tinygrad/tensor.py
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 | |
sort
¤
Performs a bitonic sort on the tensor along the specified dimension.
Order of indices for equivalent elements is always preserved.
See: https://en.wikipedia.org/wiki/Bitonic_sorter
t = Tensor([[0.1, 0.5, 1.2, 3.4, 2.1], [2.2, 1.9, 0.3, 4.5, 0.8]])
print(t.numpy())
[[0.1 0.5 1.2 3.4 2.1]
[2.2 1.9 0.3 4.5 0.8]]
sorted_values, indices = t.sort(dim=1, descending=True)
print(sorted_values.numpy())
print(indices.numpy())
[[3.4 2.1 1.2 0.5 0.1]
[4.5 2.2 1.9 0.8 0.3]]
[[3 4 2 1 0]
[3 0 1 4 2]]
Source code in tinygrad/tensor.py
2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 | |
topk
¤
Computes the top-k elements of the tensor along the specified dim.
Order of indices for equivalent elements is always preserved.
t = Tensor([[0.1, 0.5, 1.2, 3.4, 2.1], [2.2, 1.9, 0.3, 4.5, 0.8]])
print(t.numpy())
[[0.1 0.5 1.2 3.4 2.1]
[2.2 1.9 0.3 4.5 0.8]]
topk_values, topk_indices = t.topk(2, dim=1)
print(topk_values.numpy())
print(topk_indices.numpy())
[[3.4 2.1]
[4.5 2.2]]
[[3 4]
[3 0]]
Source code in tinygrad/tensor.py
2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 | |
multinomial
¤
Returns a tensor with num_samples indices sampled from a multinomial distribution weighted by self.
Note
replacement=False for num_samples > 1 is not supported yet.
Tensor.manual_seed(42)
t = Tensor([1, 2, 3, 4])
print(t.multinomial(20, replacement=True).numpy())
[2 1 3 2 3 1 2 2 3 3 3 3 3 3 2 3 2 3 3 3]
Source code in tinygrad/tensor.py
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 | |
Neural Network (functional)¤
linear
¤
Applies a linear transformation to self using weight and bias.
See: https://pytorch.org/docs/stable/generated/torch.nn.Linear.html
t = Tensor([[1, 2], [3, 4]])
weight = Tensor([[1, 2], [3, 4]])
bias = Tensor([1, 2])
print(t.linear(weight, bias).numpy())
[[ 8 12]
[16 24]]
Source code in tinygrad/tensor.py
3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 | |
sequential
¤
Applies a sequence of functions to self chaining the output of each function to the input of the next.
t = Tensor([1, 2, 3])
print(t.sequential([lambda x: x * 2, lambda x: x + 1]).numpy())
[3 5 7]
Source code in tinygrad/tensor.py
3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 | |
layernorm
¤
Applies Layer Normalization over a mini-batch of inputs.
t = Tensor.randn(8, 10, 16) * 2 + 8
print(t.mean().item(), t.std().item())
7.9793524742126465 2.074720621109009
t = t.layernorm()
print(t.mean().item(), t.std().item())
7.269673196752535e-10 1.0003894567489624
Source code in tinygrad/tensor.py
3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 | |
batchnorm
¤
batchnorm(
weight: Tensor | None,
bias: Tensor | None,
mean: Tensor,
invstd: Tensor,
axis: int | tuple[int, ...] = 1,
) -> Tensor
Applies Batch Normalization over a mini-batch of inputs.
t = Tensor.randn(8, 4, 16, 16) * 2 + 8
print(t.mean().item(), t.std().item())
8.019729614257812 1.9927232265472412
t = t.batchnorm(None, None, t.mean(axis=(0,2,3)), t.var(axis=(0,2,3)).add(1e-5).rsqrt())
print(t.mean().item(), t.std().item())
6.119149134065083e-07 0.9998146891593933
Source code in tinygrad/tensor.py
3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 | |
dropout
¤
dropout(p=0.5) -> Tensor
Applies dropout to self.
Note
dropout is only applied when Tensor.training is True.
Tensor.manual_seed(42)
t = Tensor.randn(2, 2)
with Tensor.train():
print(t.dropout().numpy())
[[-1.0287 2.17 ]
[ 1.8178 0. ]]
Source code in tinygrad/tensor.py
3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 | |
one_hot
¤
Converts self to a one-hot tensor.
num_classes defaults to -1, which means num_classes will be inferred as max(self) + 1.
t = Tensor([0, 1, 3, 3, 4])
print(t.one_hot(5).numpy())
[[1 0 0 0 0]
[0 1 0 0 0]
[0 0 0 1 0]
[0 0 0 1 0]
[0 0 0 0 1]]
Source code in tinygrad/tensor.py
3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 | |
scaled_dot_product_attention
¤
scaled_dot_product_attention(
key: Tensor,
value: Tensor,
attn_mask: Tensor | None = None,
dropout_p: float = 0.0,
is_causal: bool = False,
enable_gqa: bool = False,
) -> Tensor
Computes scaled dot-product attention.
self is the query tensor, key is the key tensor, and value is the value tensor.
q = Tensor.randn(2, 4, 8)
k = Tensor.randn(2, 4, 8)
v = Tensor.randn(2, 4, 8)
print(q.scaled_dot_product_attention(k, v).numpy())
[[[ 0.6408 0.3264 0.7317 -1.0943 0.5778 -0.0534 -0.0104 -0.0488]
[ 0.1243 -0.8259 1.6481 -0.8035 -0.3961 0.4269 0.1232 1.6462]
[ 0.9535 0.1068 0.8545 -0.5395 0.4692 -0.0548 -0.2274 0.6152]
[ 0.8891 -0.0411 0.7818 -0.3322 0.3931 -0.0202 -0.1101 0.8129]]
[[-0.4273 -0.6085 -0.0465 0.5246 0.3641 -0.0381 -0.0106 0.8349]
[ 0.6321 0.3654 0.4137 -0.2327 0.2558 0.1418 -1.27 -0.802 ]
[ 0.1794 0.4616 0.1847 -0.1988 0.2123 0.1837 -0.9583 -0.5364]
[ 0.4408 0.6125 0.0811 -0.3886 0.3602 0.4987 -1.4414 -0.9565]]]
Source code in tinygrad/tensor.py
3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 | |
binary_crossentropy
¤
Computes the binary cross-entropy loss between self and Y.
See: https://pytorch.org/docs/stable/generated/torch.nn.BCELoss.html
t = Tensor([0.1, 0.9, 0.2])
Y = Tensor([0, 1, 0])
print(t.binary_crossentropy(Y).item())
0.14462155103683472
Source code in tinygrad/tensor.py
3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 | |
binary_crossentropy_logits
¤
binary_crossentropy_logits(
Y: Tensor,
reduction: ReductionStr = "mean",
pos_weight: Tensor | None = None,
) -> Tensor
Computes the binary cross-entropy loss between self and Y where self is logits.
See: https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html
t = Tensor([-1, 2, -3])
Y = Tensor([0, 1, 0])
print(t.binary_crossentropy_logits(Y).item())
0.16292566061019897
Source code in tinygrad/tensor.py
3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 | |
sparse_categorical_crossentropy
¤
sparse_categorical_crossentropy(
Y: Tensor,
ignore_index: int = -1,
label_smoothing=0.0,
reduction: ReductionStr = "mean",
) -> Tensor
Computes the sparse categorical cross-entropy loss between self and Y.
Note
self is logits and Y is the target labels.
NOTE: unlike PyTorch, this function expects the class axis to be -1
See: https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
t = Tensor([[-1, 2, -3], [1, -2, 3]])
Y = Tensor([1, 2])
print(t.sparse_categorical_crossentropy(Y).item())
0.09391524642705917
Source code in tinygrad/tensor.py
3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 | |
cross_entropy
¤
cross_entropy(
Y: Tensor,
reduction: ReductionStr = "mean",
label_smoothing: float = 0.0,
) -> Tensor
Computes the cross entropy loss between input logits and target.
Note
self are logits and Y are the target labels or class probabilities.
See: https://pytorch.org/docs/stable/generated/torch.nn.functional.cross_entropy.html
t = Tensor([[-1, 2, -3], [1, -2, 3]])
Y = Tensor([1, 2])
print(t.cross_entropy(Y).item())
0.09391524642705917
t = Tensor([[-1, 2, -3], [1, -2, 3]])
Y = Tensor([1, 2])
print(t.cross_entropy(Y, reduction='none').numpy())
[0.055 0.1328]
Source code in tinygrad/tensor.py
3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 | |
nll_loss
¤
nll_loss(
Y: Tensor,
weight: Tensor | None = None,
ignore_index: int | None = None,
reduction: ReductionStr = "mean",
) -> Tensor
Computes the negative log likelihood loss between log-probabilities and target labels.
Note
self is log-probabilities and Y is the Y labels or class probabilities.
See: https://pytorch.org/docs/stable/generated/torch.nn.functional.nll_loss.html
t = Tensor([[-1, 2, -3], [1, -2, 3]])
Y = Tensor([1, 2])
print(t.log_softmax().nll_loss(Y).item())
0.09391524642705917
t = Tensor([[-1, 2, -3], [1, -2, 3]])
Y = Tensor([1, 2])
print(t.log_softmax().nll_loss(Y, reduction='none').numpy())
[0.055 0.1328]
Source code in tinygrad/tensor.py
3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 | |